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Automatic Recognition of Laryngoscopic Images Using
a Deep-Learning Technique
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Hui Yang, PhD; Kai Liu, PhD; Geoffrey Liu, MD, MSc; Tao Lu, PhD‡ ; Xiujuan Zheng, PhD‡;

Yu Zhao, MD, PhD‡

Objectives/Hypothesis: To develop a deep-learning–based computer-aided diagnosis system for distinguishing laryngeal
neoplasms (benign, precancerous lesions, and cancer) and improve the clinician-based accuracy of diagnostic assessments of
laryngoscopy findings.

Study Design: Retrospective study.
Methods: A total of 24,667 laryngoscopy images (normal, vocal nodule, polyps, leukoplakia and malignancy) were col-

lected to develop and test a convolutional neural network (CNN)-based classifier. A comparison between the proposed CNN-
based classifier and the clinical visual assessments (CVAs) by 12 otolaryngologists was conducted.

Results: In the independent testing dataset, an overall accuracy of 96.24% was achieved; for leukoplakia, benign, malig-
nancy, normal, and vocal nodule, the sensitivity and specificity were 92.8% vs. 98.9%, 97% vs. 99.7%, 89% vs. 99.3%, 99.0%
vs. 99.4%, and 97.2% vs. 99.1%, respectively. Furthermore, when compared with CVAs on the randomly selected test dataset,
the CNN-based classifier outperformed physicians for most laryngeal conditions, with striking improvements in the ability to
distinguish nodules (98% vs. 45%, P < .001), polyps (91% vs. 86%, P < .001), leukoplakia (91% vs. 65%, P < .001), and malig-
nancy (90% vs. 54%, P < .001).

Conclusions: The CNN-based classifier can provide a valuable reference for the diagnosis of laryngeal neoplasms during
laryngoscopy, especially for distinguishing benign, precancerous, and cancer lesions.

Key Words: Deep learning, laryngoscopic image, artificial intelligence, convolutional neural networks, clinical visual
assessment..
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INTRODUCTION
The first attempts to examine the human larynx

dates back to more than 150 years ago.1 Imaging technolo-
gies in laryngeal diagnostics have since advanced enor-
mously. Laryngology practices have changed over the past
several decades as access, visualization, and manipulation
of the larynx has become easier, better, and safer. Visuali-
zation of the larynx helps physicians better observe the
detailed morphology of the glottal structures, so as to
make an accurate diagnosis and the best management
strategy.

Laryngoscopy is used routinely to diagnose laryngeal
conditions, such as vocal fold cysts, nodules, polyps, and
especially laryngeal neoplasms. For laryngeal cancer
screening, endoscopy detection and obtaining suspicious
precancerous/cancer tissue for biopsy are essential. Early
detection for laryngeal precancer or cancer by laryngos-
copy could result in early therapeutic interventions,
benefiting patients’ survival rate and prognosis. However,
not all physicians have enough training, experience, and
equipment necessary to fully visualize the larynx.2

Human visual observation of laryngeal lesions varies,
especially for the early-stage cancers whose diagnoses
depend on the pathologic results of biopsies. There is
additional waiting time for pathology reports. In clinics
lacking good pathology support and narrow band imaging
equipment, faster and more accurate image-based diagno-
sis is in demand.

As a popular technique of deep-learning algorithms,
the convolutional neural network (CNN) has demon-
strated its impressive power in natural image classifica-
tion.3,4 The emergence of the transfer learning technique
swept away the barriers in exploiting advanced CNN-
based algorithms, and it has therefore gained consider-
able popularity in medical imaging analysis for various
clinical applications.5–8 Moreover, recent reports showed
that CNN-based algorithms could parallel or outperform
human experts in visual tasks, such as the recognition of
skin cancers, retinal diseases, gastrointestinal disease,
and lymph node metastases in breast cancer, to name a
few.9–13

The application of CNN-based algorithms in the field
of laryngoscopy has not been well described. To the best
of our knowledge, this study is the first to develop a fully
automated system to identify and distinguish laryngeal
benign, precancerous, and cancer lesions, and compare its
performance to clinical visual assessments (CVAs) deliv-
ered by otolaryngologists.

MATERIALS AND METHODS
This study was approved by the Research Ethics Commit-

tee of West China Hospital (No. 2018-64). All methods were per-
formed in accordance with the relevant guidelines and
regulations, and informed consent was waived by the ethics com-
mittee due to the retrospective nature of this study.

Image Datasets
A total of 24,667 independent and clear consecutive laryn-

goscopy images from 9,231 patients were reviewed and obtained

from the database of West China Hospital, Sichuan University,
between 2012 and 2017. All participants received laryngoscopy
performed by either one of two experienced endoscopists using a
flexible 4.9-mm laryngoscope (Olympus Medical Systems, Tokyo,
Japan). There were no exclusion criteria based on age, gender, or
race. The collected laryngeal images were taken under routine
lighting conditions and with wide ranges of zooming and optical
magnification. The glottic area was the site of interest, with all
sizes of opening of the vocal cords. All duplicate images, unclear
images with low resolution, and images without vocal cords were
exclude from this study by seven of the authors (J.R., T.L., J.W.,
Y.X., Q.Y., Y.S., L.M.). A total of 19,433 (80%) images from 7,521
patients were randomly divided into two independent subsets,
14,340 images from 5,250 patients for training and 5,093 images
from 2,271 patients for validation (to tune hyperparameters and
avoid overfitting). The remaining 20% (5,234 images from 1,710
patients) served as a testing dataset (to verify the generalization
ability of the algorithm). Finally, 500 individual laryngoscopy
images (each diagnostic class contained 100 images) were ran-
domly chosen from the 5,234 images in the testing dataset; these
images were used to compare the performance of the CNN-based
algorithm to the CVAs by the otolaryngologists, and formed the
performance assessment dataset (PAD). The development of the
dataset is described in Figure 1 and Table I.

Image Classification Gold Standard
The laryngoscopic images were classified using two reference

standard strategies: otolaryngologist-based and pathology-based
labeling. The gold-standard classification of benign lesions, malig-
nant neoplasms, and vocal leukoplakia were based on pathological
diagnosis. Each individual’s electronic chart was reviewed retro-
spectively by eight of the authors (J.R., T.L., J.W., Y.W., Y.S., L.M., Q.Y.,
W.Y.). A total of 8,645 images were labeled as benign lesions
(polyps, 2,995 images), leukoplakia (2,120 images), and malignan-
cies (3,530 images) according to their pathological records.

Due to the lack of biopsies for normal and small vocal nod-
ules, these datasets (16,022 images) were manually sorted and
labeled by a panel of experts (authors J.R., T.L., J.W., Y.Z., H.Y., Y.W.,
H.W.) according to the appearance of the vocal fold. Normal vocal
folds were defined as smooth and straight edges of vocal folds,
without visible blood vessels, erythema, edema, ventricular oblit-
eration, postcricoid hyperplasia, mesh vascularization, or
pseudosulcus. Vocal nodules were defined according to their typi-
cal shape features, of which nodules were bilateral, symmetrical,
and broad based (Fig. 2). If there were disagreements in the
labeling for each image, a consensus was reached among all of
the experts. The image quantity for each class in each dataset is
shown in Table I.

CNN-Based Diagnostic Classification Algorithm
Previous related work—CNN and ResNet
TRANSFER LEARNING. Transfer learning strategy

was conducted in this study.15 The ResNet-101 model,14 which
has been pretrained and showed excellent performance (with
6.4% top-five error and 22.6% top-one error) on the ImageNet
dataset (contains 1.2 million images with 1,000 categories),4 was
adopted for the task of classifying laryngoscopy images (see
Supporting Information, Methods).

THE CNN-BASED CLASSIFIER. The CNN-based
classifier utilized a single ResNet-101 model to classify
laryngoscopic images into five conditions. We modified the num-
ber of output classes of the last layer from 1,000 to five, and fine-
tuned parameters across all the layers using laryngoscopic image
training data.
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Training, validation, and testing
TRAINING. To match the original input dimensions of

the ResNet-101 model, we resized the images to 240 × 240 pixels,
and then cropped them to 224 × 224 pixels randomly in the pro-
cess of training. We changed the brightness and contrast of the
input images randomly, flipping them horizontally, with a proba-
bility of 0.5, and rotating them randomly between −30� and 30�

for data augmentation.
Weighted cross-entropy loss function was used to rescale

the weight of each class to deal with the imbalanced dataset dur-
ing training.16 The loss weights for leukoplakia, polyps, malig-
nancy, normal, and vocal nodules in the direct-ResNet classifier
were set as 5.62, 3.53, 2.90, 1, and 1.86 according to the amount
of training images.

Stochastic gradient descent optimizers, with a momentum
of 0.9 and weight decay of 0.000001, were used in the training
procedures. The initial learning rate was set to 0.0001. The

learning rates were a decade every 10 epochs, with a factor of
10 for the convergence of the models (Supporting Figure S1A, B).

VALIDATION AND TESTING. The validation
dataset was used to find the best hyperparameters and to avoid
overfitting during training, and the test dataset was used to eval-
uate the performances of different classifiers at the end.

Pytorch, a popular deep-learning framework (https://github.
com/pytorch), was used to establish the CNN-based classifier. The
proposed classifier was trained on an Ubuntu 16.04 computer with
one Intel (Santa Clara, CA) Core i7-5930K CPU, two NVIDIA
(Santa Clara, CA) GTX 1080 8 GB GPUs, and 16 GB RAM memory.

The t-distributed stochastic neighbor embedding method
was used to explore the internal features learned by the CNN-
based classifier.17 Gradient-weighted class activation mapping
(Grad-CAM) was also used to generate the activation map of
predicted classes.18 Grad-CAM is a technique that helps explain
the decision-making process of the CNN model by producing a

Fig. 1. The flow diagram of the dataset creation. [Color figure can be viewed in the online issue, which is available at www.laryngoscope.com.]

TABLE I.
The Number of Different Diagnostic Images for Each Condition by Dataset.

Subsets Training Dataset Validation Dataset Testing Dataset Total
Performance Assessment Dataset
(Selected From the Testing Dataset)

Normal 6,129 2,043 2,043 10,215 100

Vocal nodules 3,279 1,264 1,264 5,807 100

Leukoplakia 1,089 366 665 2,120 100

Benign 1,734 705 556 2,995 100

Malignancy 2,109 715 706 3,530 100

Total 14,340 (58.1%) 5,093 (20.6%) 5,234 (21.2%) 24,667 (100%) 500

The percentages in parentheses are the proportions of each subset.
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coarse localization map highlighting important regions in the
image, and the produced heatmap can also be used to guide the
physicians during examination of the clinical image.19

Comparison between the deep-learning–based
algorithm and clinician visual assessments. The PAD
(500 images) mentioned previously was used to compare the
performance between the CNN-based algorithm and CVAs. A
panel of 12 otolaryngologists (J.Z., T.X., W.G., R.L., C.L., K.L., X.Z.,
Y.Z. J.A., Y.R., F.L., M.C.) from the three tertiary hospitals partic-
ipated in this comparison. An otolaryngologist would earn one
point if his/her judgement for one image was correct. The dis-
tribution of professional titles of the 12 doctors was: 41.7%
(five individuals: clinicians 2, 7, 9, 10, and 12) were residents;
33.3% (four individuals: clinicians 3, 5, 6, and 8) were attend-
ing doctors; and 25% (three individuals: clinicians 1, 4, and
11) were vice or chief physicians. All physicians performed
blinded assessments according to the appearance of images
without time constraint. Receiver operating characteristics
(ROCs) were generated to compare the recognition ability for
each class between the proposed algorithm and that of the
12 physicians.

Statistical Analysis
The Student t test was applied to analyze the accuracy

rate (score). ROC curves and dichotomized tables were used to
determine sensitivity and specificity comparing either CVA or
the CNN-based algorithm with the gold standard. The correla-
tion between time consumption and accuracy rate of

physicians was analyzed by using the Pearson correlation
test. Analysis of variance was conducted to test whether there
were differences between the physicians’ professional titles
and accuracy. All statistical procedures were performed using
SPSS version 17.0 (IBM, Armonk, NY); significance was set at
an α of .05.

RESULTS

Classification Results of the Deep-Learning–
Based Algorithm

The CNN-based classifier achieved an overall accuracy
of 96.24% on the testing dataset, with high sensitivities ver-
sus specificities of 92.78% versus 98.95% for leukoplakia
(the area under the ROC curve [AUC] = 0.9975), 97.30%
versus 99.67% for polyps (AUC = 0.9972), 88.95% versus
98.29% for malignancy (AUC = 0.9956), 99.02% versus
99.36% for normal (AUC = 0.9991), and 97.15% versus
99.09% for vocal nodules (AUC = 0.9976), respectively
(Table II). The performance details in the classification for
laryngeal conditions by CNN are shown in Figure 3. We
visualized the image representations at the last hide layer
of the CNN-based classifier by forward propagation of test
images (Supporting Fig. S1C, D). A predictive classification
demo is available at https://github.com/xpjing-SCU/
Laryngoscope-image-classification.

Fig. 2. Representative laryngoscopic images for the reference standard (A) normal, (B) vocal nodule, (C) leukoplakia, (D) benign,
(E) malignancy. [Color figure can be viewed in the online issue, which is available at www.laryngoscope.com.]
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TABLE II.
The Performance of CNN Classifier and 12 Clinicians.

Performer Subsets

Clinician Visual
Assessment Scores

Sensitivity P Value Specificity P Value AccuracyMean � SD P Value

CNN (testing dataset,
5,234 images)

Normal — — 99.02% — 99.36% — 96.24%

Vocal nodule — — 97.15% — 99.09% —

Polyps — — 97.30% — 99.67% —

Leukoplakia — — 92.78% — 98.95% —

Malignancy — — 89% — 99.33% —

CNN (performance assessment,
dataset, 500 images)

Normal — — 100% — 98.75% — 94%

Vocal nodule — — 98% — 98.7% —

Polyps — — 91% — 99.5% —

Leukoplakia — — 91% — 98.7% —

Malignancy — — 90% — 98.25% —

Clinicians (performance assessment,
dataset,500 images)

Normal 86 � 2.71 .000* 96.7% (94.5-98.9) .014 99% (98.6-99.7) .013* 86%

Vocal nodules 45 � 6.75 .000* 50.1% (36.2-64) .000* 89% (86.1-91.4) .000* 45%

Polyps 86 � 3.33 .000* 90.1% (83.8-96.3) .776 97% (95.6-98.6) .431 86%

Leukoplakia 65 � 4.67 .000* 78.3% (72.8-83.7) .001* 95% (94-96.3) .001* 65%

Malignant 54 � 6.31 .000* 69.4% (62.1-76.5) .000* 94% (93.4-95) .000* 54%

Total 62 � 7.93 .015* 77.8% (67.1-88.6) .971 94% (90.8-98.1) .98 62%

*Significant difference.
The specificity and sensitivity for clinicians were presented with 95% confidence interval. The scores (mean � SD) reflect the numbers of correct diagnoses,

where each point reflects one right diagnosis. P value: clinician visual assessment compared with the CNN classifier. Sensitivity: true positive/(true positive + false
positive). Specificity: true negative/(true negative + false positive). CNN = convolutional neural network; SD = standard deviation.

Fig. 3. Confusion matrix of the performance of clinician visual assessments (CVAs) for each of the 12 physicians and the convolutional neural
network (CNN) classifier on different datasets. The purple tables present the performance details of the individual clinician. The blue tables
describe the performance of the classification model on two datasets: (A) the confusion matrix of the CNN classifier on 5,234 test images, and
(B) the confusion matrix of the CNN classifier on the 500 performance assessments dataset that had been selected to compare the perfor-
mances of the CNN-based algorithm and CVAs. The individual table cell values represent the number of images in each category. For each
confusion matrix, vertical labels represent the gold-standard results (true labels), whereas the horizontal labels represent the decisions made
by the classifiers (predicted labels). [Color figure can be viewed in the online issue, which is available at www.laryngoscope.com.]
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The Decision-Making Process of the CNN Model
and Heatmap-Based Error Analysis

The Grad-CAM technique was utilized to analyze
the decision-making process of CNN models. Supporting
Figure S2 shows those correctly classified test images and
their corresponding activation maps. As for those mis-
classified test images, their Grad-CAM–based heatmaps
could help explain how those wrong decisions were made
by the CNN model (Supporting Fig. S3).

The Performance of CVA by Otolaryngologists.
The panel of 12 physicians obtained an average score of
62% for the PAD. There were no significant differences
among the scores of junior, intermediate, and senior
physicians. Because there was a certain level of uncer-
tainty in some of the clinician ratings, this was regarded
as an error when determining accuracy. The accuracy
of physicians, with corresponding specificities and
sensitivities for each class, are listed in the Table II.
The answers for each test by individuals are presented
in the Figure 3. Physicians had the greatest difficulty
distinguishing leukoplakia and malignant lesions.
The average time physicians spent to assess the PAD
was 141.9 � 83.5 minutes (mean � standard deviation)
(range = 37.5–300 minutes); there was no significant
association between the time spent assessing and the
accuracy rates.

Comparison Between the CNN-Based Classifier
With Human Experts Using CVAs. The CNN-based
classifier had been tested with the same PAD as the phy-
sicians. It only took the computer 22.7 seconds to diag-
nose all images, which was on average 500 times more
time efficient than CVAs. In this task, the CNN-based
classifier achieved better overall accuracy than human
experts (94% vs. 62%, P < .001) and outperformed physi-
cians in all lesion recognitions, especially in the subsets
of nodules (98% vs.45%, P < .001), polyps (91% vs. 86%,
P < .001), leukoplakia (91% vs. 65%, P < .001), and malig-
nancy (90% vs. 54%, P < .001) (Table II).

In the aspects of identifying sensitivity and specific-
ity, the integrated CNN outperformed CVA significantly in
the classes of normal (CNN vs. CVA: sensitivity 100%
vs. 96.7%; specificity 99% vs. 99%), vocal nodules (CNN
vs. CVA: sensitivity = 98% vs. 50%, P < .001; specific-
ity = 99% vs. 89%, P = .003), benign (CNN vs. CVA: sensi-
tivity = 91% vs. 90%, P = .655; specificity = 99.5% vs. 97%,
P < .001), leukoplakia (CNN vs. CVA: sensitivity = 91%
vs. 78%, P < .001; specificity = 98.7% vs. 95%; P = .72), and
malignant (CNN vs. CVA: sensitivity = 90% vs. 69%,
P = .015; specificity = 98% vs. 94%, P = .18). These compar-
isons are presented in Figures 3 and 4 and Table II.

To keep our machine learning in a real-world prac-
tice approach, routine lighting conditions and wide

Fig. 4. Receiver operating characteristics (ROC) curves of the convolutional neural network (CNN) classifier comparing with the 12 physicians.
Each green point represents the performance of a human clinician. The X represents the performances of the CNN classifier when using the
testing sets of the 500 performance assessments dataset. The ROC analyses for each class were performed in a one-versus-all scheme. For
each condition (normal, vocal nodule, leukoplakia, benign, and malignant), the threshold of the output in ResNet was varied in the interval 0 to
1 to generate the ROC curves for each threshold point. AUC = the area under the ROC curve. [Color figure can be viewed in the online issue,
which is available at www.laryngoscope.com.]
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ranges of zooming and optical magnifications were per-
formed, with the only vocal cords to be visible, of which
continuous images from different laryngeal segments
could reflect the dynamic process of laryngoscopy to some
extent. Supporting Figure S4 illustrates laryngeal condi-
tions in different angles, distances, and brightness in our
database. Furthermore, gender and age were not
restricted in this study to guarantee the universality of
this technique, and the automatic system maintained
high overall accuracy (above 95%) even though the ana-
tomic structures among male, female, the elderly, and
children have different appearances.

DISCUSSION
Laryngoscopy is the diagnostic procedure for many

laryngeal diseases, alongside clinical symptoms and path-
ological findings. Visualization of the larynx under laryn-
goscopy is among the first steps to diagnosis, but it is
fraught with subjectivity and is dependent greatly on the
experience of the examiner. The ideal methods to reduce
individual variability efficiently, especially for patients
with cancerous or precancerous lesions, will greatly help
the early screening/detection of laryngeal cancers and
improve patients’ prognosis.

Computer-aided diagnosis systems based on deep-
learning techniques for laryngeal diseases have been rarely
utilized. Witt et al. conducted artificial neural networks on
the laryngoscopy images of 62 patients to identify
laryngopharyngeal reflux.20 Verikas et al. categorized
785 vocal fold images by using the kernel-based automated
method and achieved a 94% accurate rate.21 Ilgner et al.
developed an automated system to differentiate healthy
and diseased laryngeal images based on co-occurrence
matrices, with an 81% correct classification rate when test-
ing the system on a very small set of 35 images.22

In this study, we developed a CNN-based classifier
for the screening and diagnosis of laryngeal disease. This
deep-learning technique took a practical approach; we
neither utilized artificial light nor zoom or optical amplifi-
cation restrictions, and no limit or exclusion was per-
formed for age and genders, which maximally kept the
natural diversity of different laryngeal appearance of dif-
ferent disease conditions in the real world. Moreover, the
automatic intelligent system using a deep-learning algo-
rithm based on large database training turned out to be
efficient and accurate for all conditions whether they
were male or female and elderly or children.

Physicians have the challenge in distinguishing pre-
cancerous lesions and cancer, which are generally difficult
clinical entities, often with much heterogeneity of appear-
ance and a continuum of severity (leading to borderline
and potentially overlapping diagnostic states). If the
appearance of the neoplasm is highly suspected to be can-
cer, physicians will take a biopsy under the guidance of
the laryngoscope; however, misdiagnosis is still not rare
if the cancer is in situ, in which case it is hard to distin-
guish from leukoplakia. Our newly developed laryngeal
automatic diagnosing system performed excellently in
distinguishing precancerous lesions (leukoplakia) and
cancer, with sensitivities and specificities over 90%, as

well as in identifying a normal larynx and vocal nodules.
Regardless, the performances were significantly better
than manual CVA by physicians in almost all compari-
sons, but never performed significantly worse under any
circumstance. Our results thus suggested that deep-
learning techniques have value in the setting of clinical
laryngoscopy assessments, which will help develop a mod-
ern automatic system for diagnosing laryngeal lesions by
noninvasive laryngoscopies.

However, this diagnostic system was designed to sup-
plement, but not replace, clinical assessments, which could
be useful for the screening of laryngeal disease. Automatic
diagnostic classification algorithms could help physicians to
make more confident determinations in laryngoscopies,
especially in the case of precancers/early cancers. The rapid-
ity of assessment by algorithms ensured that clinical deci-
sion making was not delayed, and could raise flags in some
cases that would allow for further clinical investigation,
such as giving recommendation for biopsy for highly suspi-
cious malignant neoplasms. Computer-aided diagnosis is
thus becoming a next-generation tool for the diagnosis of
human disease, which can offer promising applicability to
daily clinical practice for reducing the burden of endo-
scopists and the waiting time of patients, while making the
cancer-screening procedure become more efficient. Such
technology will also benefit patients in remote and rural
areas through telemedicine technology,and improve the
quality of medical care in developing countries and areas.

The limitations of this study included that we only
focused on five major laryngeal conditions, meaning that
we did not train or test rare diagnostic entities. Further
research is necessary to evaluate additional types of
laryngeal diseases such as papilloma and amyloidosis.
Another limitation was that for the group of small vocal
nodules, of which tissues were quite limited and were not
routinely biopsied or no surgery was performed, the
criteria for inclusion in the database was mainly
according to the panel of experts. However, due to its dis-
tinct appearance and consensus by all experts, the accu-
racy of the database itself could be guaranteed.

CONCLUSION
This newly developed computer-aided system pro-

vides a valuable reference for the screening of laryngeal
neoplasms during laryngoscopy, especially for dis-
tinguishing benign precancerous lesions and cancer in a
real-word condition.
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