362 research outputs found

    Conformational Epitopes of Pemphigus Antigens (Dsg1 and Dsg3) Are Calcium Dependent and Glycosylation Independent

    Get PDF
    The target molecule of pemphigus autoantibodies is a transmembrane desmosomal component, desmoglein 3 (Dsg3) in pemphigus vulgaris (PV) and Dsg1 in pemphigus foliaceus (PF). In this study, we examined the effects of calcium and glycosylation on the antigenicity of the pemphigus antigens and on the generation of conformational epitopes. We used recombinant baculovirus proteins, PVIg and PFIg, which are considered to reflect accurately the native conformation of the extracellular domain of their respective proteins Dsg3 and Dsg1. These baculoproteins could immunoadsorb heterogeneous autoantibodies from the corresponding sera of PV and PF patients, completely blocking indirect immunofluorescence staining of normal human skin. Chelating calcium from the solution containing the baculoproteins using ethylenediaminetetraacetic acid (EDTA) or ethyleneglycol-bis(β-aminoethyl ether)-N,N,N', N'-tetraacetic acid (EGTA) abolished immunoadsorption by both PVIg and PFIg; however, immunoadsorption by the baculoproteins was restored after dialysis against 1 mM calcium. Nonglycosylated forms of both baculoproteins produced in the presence of tunicamycin retained their immunoadsorptive ability. Furthermore, immunoadsorption by the baculoproteins was prevented irreversibly by treatment with low pH, high pH, and boiling, but not with the non-ionic detergent Nonidet P-40. These findings indicate that formation of the conformational epitopes on the pemphigus antigens is dependent on calcium but independent of glycosylation, and provide direct evidence that calcium plays an important role in determining the antigenic properties of the pemphigus antigens

    Development of Lesson Efficiency in Middle School Social Studies

    Get PDF
    指導法・実践報

    Vector competence of Aedes vexans (Meigen), Culex poicilipes (Theobald) and Cx. quinquefasciatus Say from Senegal for West and East African lineages of Rift Valley fever virus

    Get PDF
    Background Rift Valley fever virus (RVFV; Phlebovirus, Bunyaviridae) is a mosquito–borne, zoonotic pathogen. In Senegal, RVFV was first isolated in 1974 from Aedes dalzieli (Theobald) and thereafter from Ae. fowleri (de Charmoy), Ae. ochraceus Theobald, Ae. vexans (Meigen), Culex poicilipes (Theobald), Mansonia africana (Theobald) and Ma. uniformis (Theobald). However, the vector competence of these local species has never been demonstrated making hypothetical the transmission cycle proposed for West Africa based on serological data and mosquito isolates. Methods Aedes vexans and Cx. poicilipes, two common mosquito species most frequently associated with RVFV in Senegal, and Cx. quinquefasciatus, the most common domestic species, were assessed after oral feeding with three RVFV strains of the West and East/central African lineages. Fully engorged mosquitoes (420 Ae. vexans, 563 Cx. quinquefasciatus and 380 Cx. poicilipes) were maintained at 27 ± 1 °C and 70–80 % relative humidity. The saliva, legs/wings and bodies were tested individually for the RVFV genome using real-time RT-PCR at 5, 10, 15 and 20 days post exposure (dpe) to estimate the infection, dissemination, and transmission rates. Genotypic characterisation of the 3 strains used were performed to identify factors underlying the different patterns of transmission. Results The infection rates varied between 30.0–85.0 % for Ae. vexans, 3.3–27 % for Cx. quinquefasciatus and 8.3–46.7 % for Cx. poicilipes, and the dissemination rates varied between 10.5–37 % for Ae. vexans, 9.5–28.6 % for Cx. quinquefasciatus and 3.0–40.9 % for Cx. poicilipes. However only the East African lineage was transmitted, with transmission rates varying between 13.3–33.3 % in Ae. vexans, 50 % in Cx. quinquefasciatus and 11.1 % in Cx. poicilipes. Culex mosquitoes were less susceptible to infection than Ae. vexans. Compared to other strains, amino acid variation in the NSs M segment proteins of the East African RVFV lineage human-derived strain SH172805, might explain the differences in transmission potential. Conclusion Our findings revealed that all the species tested were competent for RVFV with a significant more important role of Ae. vexans compared to Culex species and a highest potential of the East African lineage to be transmitted

    GT2004-53683 OPTIMAL OPERATIONAL PLANNING OF COGENERATION SYSTEMS WITH MICROTURBINE AND DESICCANT AIR-CONDITIONING UNITS

    Get PDF
    ABSTRACT Economic and energy-saving characteristics of cogeneration systems with microturbine and desiccant airconditioning units are investigated on system operational planning. An optimization approach is adopted to rationally evaluate these characteristics. In this approach, on/off and rated/part load status of operation of equipment and energy flow rates are determined so as to minimize the hourly energy charge subject to satisfaction of energy demand requirements. In this optimization problem, performance characteristics of the microturbine and desiccant air-conditioning units are modeled in consideration of the influence due to ambient air temperature. Moreover, the influence due to ambient air humidity is also considered in the desiccant air-conditioning unit using the psychrometric diagram. The implementation of the numerical analysis method, discussed in this paper, to two cogeneration systems, clearly shows economic and operational benefits of using desiccant air-conditioning. NOMENCLATURE A : coefficient for unit conversion from J to Wh, Wh/J a : latent heat of vaporization of water, kJ/kg B, C : coefficients of proportion, kg/m b : specific heat at constant pressure of air, kJ/(kg·°C) c : specific heat of water, kJ/(kg·°C) E : electricity, kWh/h F : natural gas consumption, m 3 /h h : specific enthalpy, kJ/kg J : hourly energy charge, yen/h m : mass flow rate, kg/h p, q, r, p′, q′, r′ : performance characteristic values of equipment Q : heat flow rate, kWh/h s : sensible heat factor t : temperature, °C u : input energy flow rate of equipment, m 3 /h, kWh/h v : velocity of process air, m/h x : absolute humidity, kg/kg y : output energy flow rate of equipment, kWh/h δ : binary variable expressing on/off status of operation η c : evaporative effectiveness of EC2 η e : effectiveness on regeneration air side of SHW η s : effectiveness on process air side of SHW ϕ : unit cost of energy charge, yen/m 3 , yen/kWh ( ), ( ) : lower and upper limit

    Deployment of the Institut Pasteur de Dakar team to Guinea in the Ebola virus Disease outbreak in West-Africa 2014-2016

    Get PDF
    First paragraph: The unit of Arbovirus and Haemorrhagic Fever Viruses at the Institut Pasteur de Dakar (IPD), a WHO-approved collaborating Centre was the first laboratory deployed to Conakry in the Ebola virus disease (EVD) outbreak in West-Africa. On 20 March 2014, the IPD laboratory received a letter from the WHO and the Guinean Ministry of Health, informing about a suspected haemorrhagic fever outbreak and difficulties to send collected samples to IPD. They therefore requested the deployment of experts to Guinea for technical support in order to diagnose the haemorrhagic fever of unknown origin. The outbreak was identified by the Institut Pasteur (France) on 21 March 2014 [1,2] in samples shipped to France by a Médecins sans Frontières investigation team

    Full-genome characterization and genetic evolution of West African isolates of Bagaza virus

    Get PDF
    Bagaza virus is a mosquito-borne flavivirus, first isolated in 1966 in Central African Republic. It has currently been identified in mosquito pools collected in the field in West and Central Africa. Emergence in wild birds in Europe and serological evidence in encephalitis patients in India raise questions on its genetic evolution and the diversity of isolates circulating in Africa. To better understand genetic diversity and evolution of Bagaza virus, we describe the full-genome characterization of 11 West African isolates, sampled from 1988 to 2014. Parameters such as genetic distances, N-glycosylation patterns, recombination events, selective pressures, and its codon adaptation to human genes are assessed. Our study is noteworthy for the observation of N-glycosylation and recombination in Bagaza virus and provides insight into its Indian origin from the 13th century. Interestingly, evidence of Bagaza virus codon adaptation to human house-keeping genes is also observed to be higher than those of other flaviviruses well known in human infections. Genetic variations on genome of West African Bagaza virus could play an important role in generating diversity and may promote Bagaza virus adaptation to other vertebrates and become an important threat in human health

    Fermi surfaces of single layer dielectrics on transition metals

    Full text link
    Single sheets of hexagonal boron nitride on transition metals provide a model system for single layer dielectrics. The progress in the understanding of h-BN layers on transition metals of the last 10 years are shortly reviewed. Particular emphasis lies on the boron nitride nanomesh on Rh(111), which is a corrugated single sheet of h-BN, where the corrugation imposes strong lateral electric fields. Fermi surface maps of h-BN/Rh(111) and Rh(111) are compared. A h-BN layer on Rh(111) introduces no new bands at the Fermi energy, which is expected for an insulator. The lateral electric fields of h-BN nanomesh violate the conservation law for parallel momentum in photoemission and smear out the momentum distribution curves on the Fermi surface.Comment: 14 pages, 6 figures, 1 table, 1 equation, Accepted for publication in the Special Surface Science issue in honor of Gerhard Ertl's Nobel Priz

    Is graphene on Ru(0001) a nanomesh?

    Full text link
    The electronic structure of a single layer graphene on Ru(0001) is compared with that of a single layer hexagonal boron nitride nanomesh on Ru(0001). Both are corrugated sp2 networks and display a pi-band gap at the K point of their 1 x 1 Brillouin zone. Graphene has a distinct Fermi surface which indicates that 0.1 electrons are transferred per 1 x 1 unit cell. Photoemission from adsorbed xenon identifies two distinct Xe 5p1/2 lines, separated by 240 meV, which reveals a corrugated electrostatic potential energy surface. These two Xe species are related to the topography of the system and have different desorption energies.Comment: 5 pages, 4 figures, 1 tabl

    Real-Time RT-PCR Assays for Detection and Genotyping of West Nile Virus Lineages Circulating in Africa

    Get PDF
    West Nile virus (WNV) is an emerging arbovirus, circulating worldwide between birds and mosquitoes, which impacts human and animal health. Since the mid-1990s, WNV outbreaks have emerged in Europe and America and represent currently the primary cause of encephalitis in the United States. WNV exhibits a great genetic diversity with at least eight different lineages circulating in the world, and four (1, 2, Koutango, and putative new) are present in Africa. These different WNV lineages are not readily differentiated by serology, and thus, rapid molecular tools are required for diagnostic. We developed here real-time RT-PCR assays for detection and genotyping of African WNV lineages. The specificity of the assays was tested using other flaviviruses circulating in Africa. The sensitivity was determined by testing serial 10-fold dilutions of viruses and RNA standards. The assays provided good specificity and sensitivity and the analytical detection limit was 10 copies/ reaction. The RT-PCR assays allowed the detection and genotyping of all WNV isolates in culture medium, human serum, and vertebrate tissues, as well as in field and experimental mosquito samples. Comparing the ratios of genome copy number/infectious virion (plaque-forming units), our study finally revealed new insight on the replication of these different WNV lineages in mosquito cells. Our RT-PCR assays are the first ones allowing the genotyping of all WNV African variants, and this may have important applications in surveillance and epidemiology in Africa and also for monitoring of their emergence in Europe and other continents
    corecore