160 research outputs found

    The Edna McConnell Clark Foundation's Tropical Disease Research Program: A 25-Year Retrospective Review 1976-1999

    Get PDF
    Documents and details the foundation's commitment to the program from its inception, and provides an analysis of its successes until the completion of the program in 1999

    Study of charge state enhancement by means of the coupling of a Laser Ion Source to the ECR ion source SERSE

    Get PDF
    The possibility to produce intense ion beams from solid elements, by using a pulsed Laser ion source as the first stage of the superconducting ECR ion source SERSE is discussed in the following. The Laser ion source may be used to produce negative or positive ions and electrons that are injected into the plasma of SERSE. The design of the experimental setup and the study of the extraction of ions from a target by means of Nd:Yag laser irradiation are briefly described. This Laser ion source will be located in the plasma chamber of the source SERSE, in presence of its magnetic field. A simple evaluation of the charge state enhancement inside the ECR plasma is also presented in the following

    Ion energy increase in laser-generated plasma expanding through axial magnetic field trap

    Get PDF
    Laser-generated plasma is obtained in high vacuum (10−7 mbar) by irradiation of metallic targets (Al, Cu, Ta) with laser beam with intensities of the order of 1010 W/cm2. An Nd:Yag laser operating at 1064 nm wavelength, 9 ns pulse width, and 500 mJ maximum pulse energy is used. Time of flight measurements of ion emission along the direction normal to the target surface were performed with an ion collector. Measurements with and without a 0.1 Tesla magnetic field, directed along the normal to the target surface, have been taken for different target-detector distances and for increasing laser pulse intensity. Results have demonstrated that the magnetic field configuration creates an electron trap in front of the target surface along the axial direction. Electric fields inside the trap induce ion acceleration; the presence of electron bundles not only focuses the ion beam but also increases its energy, mean charge state and current. The explanation of this phenomenon can be found in the electric field modification inside the non-equilibrium plasma because of an electron bunching that increases the number of electron-ion interactions. The magnetic field, in fact, modifies the electric field due to the charge separation between the clouds of fast electrons, many of which remain trapped in the magnetic hole, and slow ions, ejected from the ablated target; moreover it increases the number of electron-ion interactions producing higher charge states

    Installation of ECR2 at LNS and Preliminary tests

    Get PDF
    The source ECR2 has been built in 1998 by Pantechnik, according to the design suggested by LNS Ion Source Group. This design entails some improvements with respect to a standard CAPRICE-type source: a) the magnetic field (up to 1.6 T axial, 1.1 T radial) allows to operate the source at 14 GHz in High B mode and at 18 GHz; b) two frequency heating can be used; c) an aluminum made plasma chamber is used in place of the stainless steel one. The main features of ECR2 along with a review of the preliminary tests will be outlined. Typical currents for fully stripped nitrogen are about 25 emA; for the heaviest ions, 1 emA of Kr28+ and 10 emA of Ta27+ have been measured. The installation at LNS has been completed recently and the details will be given

    FIRST BEAM FROM THE TRASCO INTENSE PROTON SOURCE (TRIPS) AT INFN-LNS

    Get PDF
    Abstract The TRASCO intense proton source (TRIPS) has been installed at INFN-LNS THE SOURCE DESIGN The TRASCO Project is a R&D program which goal is the design of an Accelerator Driving System (ADS) for nuclear waste transmutation. The high current cw proton linear accelerator will drive a subcritical system to transmutate nuclear wastes. [1] The accelerator design is shared between different INFN laboratories and the LNS is in charge of the source design and construction. The proton source TRIPS is a high intensity microwave source, which goal is the injection of a minimum proton current of 35 mA in the following RFQ [2], with a rms normalized emittance lower than 0.2π⋅mm⋅mrad for an operating voltage of 80 kV. With respect to other sources for high intensity applications, some new features have been added, according to our experience with the high-intensity source SILHI • the microwave matching system has been improved; • a system to move the coils on-line has been realized; • the extraction system has been optimised with the aim to increase the source availability and reliability, in order to meet the requirement of a driver for an ADS system. The final design of TRIPS is shown in 2 The gaps, the voltage and the extraction holes have been designed in order to reduce the length of the extraction zone (where the beam is uncompensated) and to reduce the aperture-lens effect. Rms normalized emittance below 0.2π mm mrad (including the beam halo) have been calculated EXPERIMENTAL RESULTS CONCLUSION AND FUTURE DEVELOPMENTS In table 1 the status of the source is compared with the requirements of the TRASCO project. The requested reliability at 80 kV is not yet achieved, but the source performance are already good in terms of beam intensity, reproducibility and stability. The innovative solutions presented above have confirmed their validity. We are confident that in a few months a more significant reliability test at 80 3 kV (over two weeks) can be done. As this goal will be accomplished, the emittance measurements can be done with a similar emittance measuring device as the one described in ACKNOWLEDGEMENT

    Multicharged Carbon Ion Generation from Laser Plasma

    Get PDF
    Carbon ions generated by ablation of a carbon target using an Nd:YAG laser pulse (wavelength λ = 1064 nm, pulse width τ = 7 ns, and laser fluence of 10-110 J cm-2) are characterized. Time-of-flight analyzer, a three-mesh retarding field analyzer, and an electrostatic ion energy analyzer are used to study the charge and energy of carbon ions generated by laser ablation. The dependencies of the ion signal on the laser fluence, laser focal point position relative to target surface, and the acceleration voltage are described. Up to C4+ ions are observed. When no acceleration voltage is applied between the carbon target and a grounded mesh in front of the target, ion energies up to ∼400 eV/charge are observed. The time-of-flight signal is analyzed for different retarding field voltages in order to obtain the ion kinetic energy distribution. The ablation and Coulomb energies developed in the laser plasma are obtained from deconvolution of the ion time-of-flight signal. Deconvolution of the time-of-flight ion signal to resolve the contribution of each ion charge is accomplished using data from a retarding field analysis combined with the time-of-flight signal. The ion energy and charge state increase with the laser fluence. The position of the laser focal spot affects the ion generation, with focusing ∼1.9 mm in front of the target surface yielding maximum ions. When an external electric field is applied in an ion drift region between the target and a grounded mesh parallel to the target, fast ions are extracted and separated, in time, due to increased acceleration with charge state. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4966987

    Low power RF test of a quadrupole-free X-Band mode launcher for high brightness applications

    Get PDF
    In this work we present the low power RF characterization of a novel TM01 X-band mode launcher for the new generation of high brightness RF photo-injectors. The proposed mode launcher exploits a fourfold symmetry which minimizes both the dipole and the quadrupole fields in order to mitigate the emittance growth in the early stages of the acceleration process. Two identical aluminum mode launchers have been assembled and measured in back-to-back configurations for three different central waveguide lengths. From the back-to-back results we infer the performance of each mode launcher. The low power RF test, performed at the Istituto Nazionale di Fisica Nucleare Laboratori Nazionali del Sud (INFN-LNS), validate both the numerical simulations and the quality of fabrication. An oxygen-free high-conductivity copper version of the device is being manufactured for high power and ultra high vacuum tests that are planned to be conducted at SLAC

    Micro X-ray Fluorescence Imaging in a Tabletop Full Field-X-ray Fluorescence Instrument and in a Full Field-Particle Induced X-ray Emission End Station

    Get PDF
    A full field-X-ray camera (FF-XRC) was developed for performing the simultaneous mapping of chemical elements with a high lateral resolution. The device is based on a conventional CCD detector coupled to a straight shaped polycapillary. Samples are illuminated at once with a broad primary beam that can consist of X-rays or charged particles in two different analytical setups. The characteristic photons induced in the samples are guided by the polycapillary to the detector allowing the elemental imaging without the need for scanning. A single photon counting detection operated in a multiframe acquisition mode and a processing algorithm developed for event hitting reconstruction have enabled one to use the CCD as a high energy resolution X-ray detector. A novel software with a graphical user interface (GUI) programmed in Matlab allows full control of the device and the real-time imaging with a region-of-interest (ROI) method. At the end of the measurement, the software produces spectra for each of the pixels in the detector allowing the application of a least-squares fitting with external analytical tools. The FF-XRC is very compact and can be installed in different experimental setups. This work shows the potentialities of the instrument in both a full field-micro X-ray fluorescence (FF-MXRF) tabletop device and in a full field-micro particle induced X-ray emission (FF-MPIXE) end-station operated with an external proton beam. Some examples of applications are given as well

    Comparison of nanosecond laser ablation at 1064 and 308 nm wavelength

    Get PDF
    Abstract To study the solid Cu ablation in vacuum, two different laser sources operating at 1064 and 308 nm wavelength are employed at similar values of laser fluences. The infrared laser is a Q-switched Nd:Yag having 9 ns pulse width (INFN-LNS, Catania), while the ultraviolet one is a XeCl excimer having 20 ns pulse width (INFN-LEA, Lecce). Both experiments produced a narrow angular distribution of the ejected material along the normal to the target surface. The ablation showed a threshold laser power density, of about 7 and 3 J/cm 2 at 1064 and 308 nm, respectively, below which the ablation effect was negligible. The laser interaction produces a plasma at the target surface, which expands very fast in the vacuum chamber. Time-of-flight (TOF) measurements of the ion emission indicated an average ion velocity of the order of 4:7 Â 10 4 and 2:3 Â 10 4 m/s for the infrared and ultraviolet radiation, respectively. We also estimated approximately the corresponding temperature of the plasma from which ions originated, i.e. about 10 6 and 10 5 K for IR and UV wavelength, respectively. A discussion of the analysis of the ablation mechanism is presented. At the used laser power densities the produced Cu ions showed ionisation states between 1þ and 5þ in both cases.

    Application of Ferroelectric Cathodes to Enhance the Ion Yield in the Caesar Source at LNS

    Get PDF
    With increasing RF power the electron concentration in the plasma of ECR ion sources is decreasing in comparison to the ion concentration, so that the plasma is charging up positively. Direct injection of electrons into the ECR plasma can increase the electron charge density and the ion current yield. We have used ferroelectric cathodes to inject electrons into the Argon plasma of the CAESAR ion source at INFN-LNS (Catania, Italy). The cathode was placed at about 10 cm from the hot plasma and a bipolar high voltage pulse of 1.6 kV was used to trigger the electron emission. No additional acceleration has been provided. The use of the ferroelectric cathode leads to an increase of about 30% of the Ar8+ intensity, which has been monitored during the test. In addition, magneto-hydrodynamic instabilities in the ECR source were damped during and after electron injection
    • …
    corecore