193 research outputs found

    Evaluation of Antipsychotic Drugs’ Stability in Oral Fluid Samples

    Get PDF
    Antipsychotics have narrow therapeutic windows, and their monitoring in biological fluids is therefore important; consequently, stability in those fluids must be investigated during method development and validation. This work evaluates the stability of chlorpromazine, levomepromazine, cyamemazine, clozapine, haloperidol, and quetiapine in oral fluid (OF) samples, using the dried saliva spots (DSS) sampling approach and gas chromatography coupled to tandem mass spectrometry. Since many parameters can influence the stability of the target analytes, design of experiments was adopted to check the crucial factors that affect that stability in a multivariate fashion. The studied parameters were the presence of preservatives at different concentrations, temperature, light, and time. It was possible to observe that antipsychotic stability improved when OF samples in DSS were stored at 4 °C, with a low ascorbic acid concentration, and in the absence of light. With these conditions, chlorpromazine and quetiapine were stable for 14 days, clozapine and haloperidol were stable for 28 days, levomepromazine remained stable for 44 days, and cyamemazine was stable for the entire monitored period (146 days). This is the first study that evaluates the stability of these antipsychotics in OF samples after application to DSS cards.info:eu-repo/semantics/publishedVersio

    Comparison of embryologist stress, somatization and burnout reported by embryologists working in UK HFEA-licensed ART/IVF clinics and US ART/IVF clinics

    Get PDF
    STUDY QUESTION What is the prevalence of occupational stress, somatization, and burnout reported by UK and US, embryologists and the impact of work conditions on these well-being outcomes? SUMMARY ANSWER Surveyed UK and US embryologists reported moderate perceived stress, low somatic symptom severity, high levels of burnout, and overall stressful work conditions, but with differences that could be due to country-specific occupational and employment characteristics. WHAT IS KNOWN ALREADY? Spanish, UK, US, and international surveys have identified high levels of occupational stress, somatization, burnout, and occupational health issues among embryologists. These issues have been attributed to embryologists’ occupational challenges and work conditions. STUDY DESIGN, SIZE, DURATION A cross-sectional web-based survey was sent to 253 embryologists working in UK ART/IVF clinics and 487 embryologists working in US ART/IVF clinics. PARTICIPANTS/MATERIALS, SETTING, METHODS Participants self-reported their stress levels, somatization, burnout, and work conditions. Proportions across the Perceived Stress Scale (PSS), Patient Health Questionnaire (PHQ-15), Maslach Burnout Inventory-General Survey (MBI-GS), a single-item work unit grade (A–F), and customized occupational and sociodemographic questionnaires were calculated using descriptive statistics. Welch’s t-test was utilized to compare PSS and PHQ-15 scores between groups. Risk ratios were calculated using log-binomial regression for all models except for levels of anxiety related to performing cryostorage tasks, for which Poisson models were used. MAIN RESULTS AND THE ROLE OF CHANCE In total, 50.6% (128) of the embryologists in the UK and 50.1% (244) in the US completed the survey. Both groups self-reported moderate PSS and low PHQ-15 scores, although fewer UK embryologists scored high on the MBI cynicism dimension than their US colleagues (43% UK vs 60% US embryologists, P < 0.05). The UK and US embryologists did not differ on the MBI exhaustion dimension with both scoring high for exhaustion (59% UK vs 62% US). Although 81% and 80% of UK and US embryologists, respectively, reported working overtime, more embryologists in the UK reported being adequately compensated. Increasing levels of anxiety-related to cryostorage showed a dose-dependent increased risk of burnout on at least two MBI-GS dimensions only in the UK group, and, a dose-dependent likelihood of higher PSS and PHQ-15 scores in both groups. LIMITATIONS, REASONS FOR CAUTION Since the two groups were surveyed 9 months apart and were self-reporting, the study is limited by the differences in responsibilities, scheduling, and workload specific to the time of year. WIDER IMPLICATIONS OF THE FINDINGS Work-related health issues and occupational challenges shared by UK and US embryologists could be addressed by organizational enhancements and technology. Lower levels of stress and burnout among UK embryologists might be due to the HFEA-provided structure/certainty. STUDY FUNDING/COMPETING INTEREST(S) This study was supported without any external funding by TMRW Life Sciences Inc., which is developing and commercializing an automated platform for embryology. M.G.C. and M.S.L. are full-time employees and stockholders/shareholders with TMRW Life Sciences, and A.M. of Novavax, Inc. was an employee of TMRW Life Sciences. G.P. is a consultant for TMRW Life Sciences. The remaining authors declare no conflict of interest. TRIAL REGISTRATION NUMBER NCT05326802; NCT05708963

    If we build it they will come: targeting the immune response to breast cancer.

    Get PDF
    Historically, breast cancer tumors have been considered immunologically quiescent, with the majority of tumors demonstrating low lymphocyte infiltration, low mutational burden, and modest objective response rates to anti-PD-1/PD-L1 monotherapy. Tumor and immunologic profiling has shed light on potential mechanisms of immune evasion in breast cancer, as well as unique aspects of the tumor microenvironment (TME). These include elements associated with antigen processing and presentation as well as immunosuppressive elements, which may be targeted therapeutically. Examples of such therapeutic strategies include efforts to (1) expand effector T-cells, natural killer (NK) cells and immunostimulatory dendritic cells (DCs), (2) improve antigen presentation, and (3) decrease inhibitory cytokines, tumor-associated M2 macrophages, regulatory T- and B-cells and myeloid derived suppressor cells (MDSCs). The goal of these approaches is to alter the TME, thereby making breast tumors more responsive to immunotherapy. In this review, we summarize key developments in our understanding of antitumor immunity in breast cancer, as well as emerging therapeutic modalities that may leverage that understanding to overcome immunologic resistance

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Dual targeting of TGF-β and PD-L1 via a bifunctional anti-PD-L1/TGF-βRII agent: status of preclinical and clinical advances

    No full text
    Immunosuppressive entities in the tumor microenvironment (TME) remain a major impediment to immunotherapeutic approaches for a majority of patients with cancer. While the immunosuppressive role of transforming growth factor-β (TGF-β) in the TME is well known, clinical studies to date with anti-TGF-β agents have led to limited success. The bifunctional agent bintrafusp alfa (previously designated M7824) has been developed in an attempt to address this issue. Bintrafusp alfa consists of an IgG1 targeting programmed death ligand 1 (PD-L1) moiety fused via peptide linkers to the extracellular domain of two TGF-β receptor II molecules designed to ‘trap’ TGF-β in the TME. This agent is able to bring the TGF-β trap to the TME via its anti-PD-L1 component, thus simultaneously attacking both the immunosuppressive PD-L1 and TGF-β entities. A number of preclinical studies have shown bintrafusp alfa capable of (1) preventing or reverting TGF-β-induced epithelial-mesenchymal transition in human carcinoma cells; this alteration in tumor cell plasticity was shown to render human tumor cells more susceptible to immune-mediated attack as well as to several chemotherapeutic agents; (2) altering the phenotype of natural killer and T cells, thus enhancing their cytolytic ability against tumor cells; (3) mediating enhanced lysis of human tumor cells via the antibody-dependent cell-mediated cytotoxicity mechanism; (4) reducing the suppressive activity of Treg cells; (5) mediating antitumor activity in numerous preclinical models and (6) enhancing antitumor activity in combination with radiation, chemotherapy and several other immunotherapeutic agents. A phase I clinical trial demonstrated a safety profile similar to other programmed cell death protein 1 (PD-1)/PD-L1 checkpoint inhibitors, with objective and durable clinical responses. We summarize here preclinical and emerging clinical data in the use of this bispecific and potentially multifunctional agent

    Current evidence and future perspectives of immune-checkpoint inhibitors in unresectable malignant pleural mesothelioma

    No full text
    Platinum-based chemotherapy is commonly used as the standard first-line treatment for unresectable malignant pleural mesothelioma (MPM). However, in recent times, immune-checkpoint inhibitors (ICIs) have led to a paradigm shift. Herein, we review relevant literature and ongoing trials of ICIs used as both first-line and salvage therapies. Specifically, in the Japanese single-arm, phase II trial, the MERIT trial, nivolumab, an antiprogrammed cell death 1 (PD-1) antibody showed favorable efficacy when used as a salvage therapy. Currently, multiple ICI monotherapy or combination therapy trials have been conducted, which could provide further evidence. Among available ICIs, the anti-PD-1 antibody is promising for unresectable MPM, despite the limited efficacy of anti-CTLA4 monotherapy. Ongoing studies will further confirm the potential efficacy of ICIs for MPM, as observed across other malignancies. It is also crucial to identify any clinically useful predictive biomarkers that could reveal ICIs with maximal effects in MPM

    Functional and mechanistic advantage of the use of a bifunctional anti-PD-L1/IL-15 superagonist

    No full text
    BackgroundAnti(α)-programmed cell death-1 (PD-1)/programmed death-ligand 1 (PD-L1) monotherapy fails to provide durable clinical benefit for most patients with carcinoma. Recent studies suggested that strategies to reduce immunosuppressive cells, promote systemic T-cell responses and lymphocyte trafficking to the tumor microenvironment (TME) may improve efficacy. N-809 is a first-in-class bifunctional agent comprising the interleukin (IL)-15 superagonist N-803 fused to two αPD-L1 domains. Thus, N-809 can potentially stimulate effector immune cells through IL-15 and block immunosuppressive PD-L1. Here, we examined the antitumor efficacy and immunomodulatory effects of N-809 versus N-803+αPD-L1 combination.MethodsThe ability of N-809 to block PD-L1 and induce IL-15-dependent immune effects was examined in vitro and in vivo. Antitumor efficacy of N-809 or N-803+αPD-L1 was evaluated in two murine carcinoma models and an extensive analysis of immune correlates was performed in the tumor and tumor-draining lymph node (dLN).ResultsWe demonstrate that N-809 blocks PD-L1 and induces IL-15-dependent immune effects. N-809 was well-tolerated and reduced 4T1 lung metastasis, decreased MC38 tumor burden and increased survival versus N-803+αPD-L1. Compared with N-803+αPD-L1, N-809 enhanced natural killer (NK) and CD8+ T-cell activation and function in the dLN and TME, relating to increased gene expression associated with interferon and cytokine signaling, lymphoid compartment, costimulation and cytotoxicity. The higher number of TME CD8+ T cells was attributed to enhanced infiltration, not in situ expansion. Increased TME NK and CD8+ T-cell numbers correlated with augmented chemokine ligands and receptors. Moreover, in contrast to N-803+αPD-L1, N-809 reduced immunosuppressive regulatory T cells (Treg), monocytic myeloid-derived suppressor cells (M-MDSC) and M2-like macrophages in the TME.ConclusionsOur results suggest that N-809 functions by a novel immune mechanism to promote antitumor efficacy. Foremost, N-809 enhances intratumoral lymphocyte numbers by increasing trafficking via altered chemokine levels in the TME and chemokine receptor expression on CD8+ T cells and NK cells. In addition, N-809 reduces immunosuppressive and pro-tumorigenic immune cells in the TME, including Treg, M2-like macrophages and M-MDSC. Overall, these novel effects of N-809 promote an inflamed TME, leading to lower tumor burden and increased survival. These results provide mechanistic insight and rationale supporting the potential clinical study of N-809 in patients with carcinoma
    corecore