248 research outputs found

    A common cause for a common phenotype : the gatekeeper hypothesis in fetal programming

    Get PDF
    Copyright © 2011 Elsevier Ltd. All rights reserved.Peer reviewedPublisher PD

    ACTIVE: a randomised feasibility trial of a behavioural intervention to reduce fatigue in women undergoing radiotherapy for early breast cancer: study protocol

    Get PDF
    Background Fatigue is rated as the most distressing side effect of radiotherapy treatment for curable breast cancer. About four in ten women treated experience fatigue, which can last for years after treatment. The impact of this debilitating tiredness is loss of independence and impaired physical and mental function. Our study will take a behavioural intervention with demonstrated effect in treating fatigue in a mixed group of chemotherapy patients and adapt it for women undergoing radiotherapy for early breast cancer. The purpose of this trial is to evaluate the feasibility of delivering the intervention in the radiotherapy pathway for patients at a high risk of fatigue and to explore participants’ experiences of the trial and intervention. Methods A pragmatic single-site non-blinded feasibility trial of a behavioural intervention. Main inclusion criteria are prescription of the UK standard 40 Gy in 15 fractions over 3 weeks of radiotherapy (± tumour bed boost) for early (stage 0–IIIa) breast cancer. The total projected sample size after attrition is 70. A previously developed fatigue risk score tool will be used to predict individual’s likelihood of experiencing fatigue. Thirty women predicted to be at a high risk of experiencing significant fatigue will be allocated in the ratio 2:1 to the behavioural intervention or education trial arms, respectively. These feasibility trial participants will be assessed at baseline, after 10 and 15 fractions of radiotherapy and 10 days, 3 weeks and 6 months after radiotherapy. A further 40 women predicted to be at a lower risk of fatigue will join a risk score validation group. Measures to assess feasibility include recruitment, retention and completion rates and variation in implementation of the intervention. Process evaluation with intervention providers and users includes fidelity and adherence checks and qualitative interviews to understand how changes in behaviour are initiated and sustained. Discussion This feasibility study collates data to both inform the progression to and design of a future definitive trial and to refine the intervention

    Palmitoylation of claudins is required for efficient tight-junction localization

    Get PDF
    Palmitoylation of integral membrane proteins can affect intracellular trafficking, protein-protein interactions and protein stability. The goal of the present study was to determine whether claudins, transmembrane-barrier-forming proteins of the tight junction, are palmitoylated and whether this modification has functional implications for the tight-junction barrier. Claudin-14, like other members of the claudin family, contains membrane-proximal cysteines following both the second and the fourth transmembrane domains, which we speculated could be modified b

    Gambling with the future of young people

    Get PDF
    First paragraph: UK Policy makers addressed two key public health problems last summer: smoking and gambling. Both are quasi-voluntary behaviours, involve powerful vested interests and have serious implications for the future health and well being of young people; but policy on them is going in opposite directions. July’s smokefree legislation was followed in October by a law increasing the legal age of tobacco purchase to 18. This builds on the 2002 Tobacco Advertising and Promotion Act, which removed all tobacco advertising, and the mandating of enhanced health warnings in 2001, which in October 2008 will be further improved by the addition of graphic images. These measures combine with systematic increases in the taxation on tobacco products, NHS countrywide smoking cessation services and multi-component health promotion

    In Vitro and In Vivo Evaluation of a Water-in-Oil Microemulsion System for Enhanced Peptide Intestinal Delivery

    Get PDF
    Peptide and protein drugs have become the new generation of therapeutics, yet most of them are only available as injections, and reports on oral local intestinal delivery of peptides and proteins are quite limited. The aim of this work was to develop and evaluate a water-in-oil (w/o) microemulsion system in vitro and in vivo for local intestinal delivery of water-soluble peptides after oral administration. A fluorescent labeled peptide, 5-(and-6)-carboxytetramethylrhodamine labeled HIV transactivator protein TAT (TAMRA-TAT), was used as a model peptide. Water-in-oil microemulsions consisting of Miglyol 812, Capmul MCM, Tween 80, and water were developed and characterized in terms of appearance, viscosity, conductivity, morphology, and particle size analysis. TAMRA-TAT was loaded and its enzymatic stability was assessed in modified simulated intestinal fluid (MSIF) in vitro. In in vivo studies, TAMRA-TAT intestinal distribution was evaluated using fluorescence microscopy after TAMRA-TAT microemulsion, TAMRA-TAT solution, and placebo microemulsion were orally gavaged to mice. The half-life of TAMRA-TAT in microemulsion was enhanced nearly three-fold compared to that in the water solution when challenged by MSIF. The treatment with TAMRA-TAT microemulsion after oral administration resulted in greater fluorescence intensity in all intestine sections (duodenum, jejunum, ileum, and colon) compared to TAMRA-TAT solution or placebo microemulsion. The in vitro and in vivo studies together suggested TAMRA-TAT was better protected in the w/o microemulsion in an enzyme-containing environment, suggesting that the w/o microemulsions developed in this study may serve as a potential delivery vehicle for local intestinal delivery of peptides or proteins after oral administration

    Loss of ASP but not ROPN1 reduces mammalian ciliary motility

    Get PDF
    Protein kinase A (PKA) signaling is targeted by interactions with A-kinase anchoring proteins (AKAPs) via a dimerization/docking domain on the regulatory (R) subunit of PKA. Four other mammalian proteins (ASP, ROPN1, SP17, and CABYR) share this highly conserved RII dimerization/docking (R2D2) domain. ASP and ROPN1 are 41% identical in sequence, interact with a variety of AKAPs in a manner similar to PKA, and are expressed in ciliated and flagellated human cells. To test the hypothesis that these proteins regulate motility, we developed mutant mouse lines lacking ASP or ROPN1. Both mutant lines produced normal numbers of cilia with intact ciliary ultrastructure. Lack of ROPN1 had no effect on ciliary motility. However, the beat frequency of cilia from mice lacking ASP is significantly slower than wild type, indicating that ASP signaling may regulate ciliary motility. This is the first demonstration of in vivo function for ASP. Similar localization of ASP in mice and humans indicates that these findings may translate to human physiology, and that these mice will be an excellent model for future studies related to the pathogenesis of human disease

    Lipopolysaccharide modifies amiloride-sensitive Na+ transport processes across human airway cells: role of mitogen-activated protein kinases ERK 1/2 and 5

    Get PDF
    Bacterial lipopolysaccharides (LPS) are potent inducers of proinflammatory signaling pathways via the activation of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK), causing changes in the processes that control lung fluid homeostasis and contributing to the pathogenesis of lung disease. In human H441 airway epithelial cells, incubation of cells with 15 µg ml−1 LPS caused a significant reduction in amiloride-sensitive Isc from 15 ± 2 to 8 ± 2 µA cm−2 (p = 0.01, n = 13) and a shift in IC50 amiloride of currents from 6.8 × 10−7 to 6.4 × 10−6 M. This effect was associated with a decrease in the activity of 5 pS, highly Na+ selective, amiloride-sensitive <1 µM channels (HSC) and an increase in the activity of ∼18 pS, nonselective, amiloride-sensitive >10 µM cation channels (NSC) in the apical membrane. LPS decreased αENaC mRNA and protein abundance, inferring that LPS inhibited αENaC gene expression. This correlated with the decrease in HSC activity, indicating that these channels, but not NSCs, were comprised of at least αENaC protein. LPS increased NF-κB DNA binding activity and phosphorylation of extracellular signal-related kinase (ERK)1/2, but decreased phosphorylation of ERK5 in H441 cells. Pretreatment of monolayers with PD98059 (20 µM) inhibited ERK1/2 phosphorylation, promoted phosphorylation of ERK5, increased αENaC protein abundance, and reversed the effect of LPS on Isc and the shift in amiloride sensitivity. Inhibitors of NF-κB activation were without effect. Taken together, our data indicate that LPS acts via ERK signaling pathways to decrease αENaC transcription, reducing HSC/ENaC channel abundance, activity, and transepithelial Na+ transport in H441 airway epithelial cells
    corecore