

Impulsivity and Cognitive Distortions in Pathological Gambling

Dr Luke Clark

Department of Experimental Psychology University of Cambridge, U.K.

UNIVERSITY OF CAMBRIDGE

The Psychology of Gambling

- 1. How do we explain the prevalence of gambling if people understand that 'the house always wins'?
- 2. How does gamble become dysfunctional (addictive?) in a minority?

The Cognitive Approach to Gambling

- Gamblers experience distorted processing of probability and randomness, such that they overestimate their chances of winning
- Distortions elevated in problem gamblers

- Two basic types:
- Sequential predictions based on independence of turns
- Mistaken appraisals of skill due to perceived personal control

Clark (2010 Proc Roy Soc B), Michalczuk et al (2011)

Gambling-Related Cognitions Scale

The 'Gambler's Fallacy' in Simulated Roulette

Simple task:

- Guess RED or BLACK
- Then, rate your confidence

Black, Black, Black, Black → "RED!"

(i.e. negative recency)

Studer & Clark (in prep)

The 'Gambler's Fallacy' in Simulated Roulette

Near-Misses

"A special kind of failure to reach a goal, one that comes close to being successful" (Reid 1986)

Kassinove & Schare 2001

Near-Misses in a Simulated Slot Machine

Selection - Anticipation - Outcome

Subjective Differences between Near-Misses and Full-Misses

Clark et al (2009 Neuron)

Arousal Responses to Wins and Near-Misses

Clark et al (2011 Journal of Gambling Studies)

fMRI Responses to Wins and Near-Misses

WINNING OUTCOMES minus ALL NON-WIN OUTCOMES

Dopaminergic Anterior Ventral Striatum mPFC Midbrain Insula

A

B NEAR-MISS OUTCOMES minus FULL-MISS OUTCOMES

Clark et al (2009 Neuron)

Gambling Severity predicts Near-Miss Activity in <u>Midbrain</u>

re-smoothed at 4mm

Chase & Clark (2010 J Neurosci)

'Close only counts in horseshoes and hand grenades'

<u>Horseshoes</u>

Game of skill

Near-misses provide indication of skill acquisition, and thus likelihood of future success

Should be valued by brain reward system

Fruit machine
Game of chance
Near-misses provide no
indication of future success
Should be ignored by brain

Griffiths (1993), Reid (1986)

Conclusions

- Gambling distortions can be elicited in healthy individuals in a laboratory environment (Gambler's Fallacy, effects of nearmisses)
- Near-miss outcomes are experienced as unpleasant but invigorate gambling behaviour
- Wins and near-misses are associated with phasic changes in peripheral arousal
- At a neural level, near-misses trigger anomalous activation in components of the brain reward system: VS, insula, vmPFC.
- The size of these near-miss responses predicts susceptibility to gambling distortions in healthy volunteers (insula) and severity of gambling involvement in regular gamblers (midbrain)
- No evidence for changes in (baseline) dopamine D2 receptors in PG, but correlations with impulsivity

Acknowledgements

University of Cambridge

Andrew Lawrence Rosanna Michalczuk Henry Chase Mike Aitken Barbara Sahakian Trevor Robbins Barney Dunn (MRC CBU) Imperial College, London Henrietta Bowden-Jones Paul Stokes Anne Lingford-Hughes Kit Wu

Robert Rogers (Oxford) Antonio Verdejo (U Granada)

Funding support:

Medical Research Council

MRC – Wellcome Trust Behavioural and Clinical Neuroscience Institute Economic and Social Research Council Responsibility in Gambling Trust (now RGF)