47 research outputs found

    Immunogenicity of AGS-004 Dendritic Cell Therapy in Patients Treated during Acute HIV Infection

    Get PDF
    AGS-004 consists of matured autologous dendritic cells co-electroporated with in vitro transcribed RNA encoding autologous HIV antigens. In an open-label, single arm sub-study of AGS-004-003, AGS-004 was administered monthly to suppressed participants who started antiretroviral therapy (ART) during acute HIV infection. HIV-1 specific T cell responses were measured by multicolor flow cytometry after 3-4 doses. The frequency of resting CD4+ T-cell infection (RCI) was measured by quantitative viral outgrowth assay. Participants demonstrating increased immune response postvaccination were eligible for analytic treatment interruption (ATI). AGS-004 induced a positive immune response defined as ≥2-fold increase from baseline in the number of multifunctional HIV-1 specific CD28+/CD45RA- CD8+ effector/memory cytoxic T-lymphocytes (CTLs) in all six participants. All participants underwent ATI with rebound viremia at a median of 29 days. Immune correlates between time to viral rebound and the induction of effector CTLs were determined. Baseline RCI was low in most participants (0.043-0.767 IUPM). One participant had a >2-fold decrease (0.179-0.067 infectious units per million [IUPM]) in RCI at week 10. One participant with the lowest RCI had the longest ATI. AGS-004 dendritic cell administration increased multifunctional HIV-specific CD28+/CD45RA- CD8+ memory T cell responses in all participants, but did not permit sustained ART interruption. However, greater expansion of CD28-/CCR7-/CD45RA- CD8+ effector T cell responses correlated with a longer time to viral rebound. AGS-004 may be a useful tool to augment immune responses in the setting of latency reversal and eradication strategies

    Identifying challenges and opportunities for improved nutrient management through U.S.D.A's Dairy Agroecosystem Working Group

    Get PDF
    Nutrient management is a priority of U.S. dairy farms, although specific concerns vary across regions and management systems. To elucidate challenges and opportunities to improving nutrient use efficiencies, the USDA’s Dairy Agroecosystems Working Group investigated 10 case studies of confinement (including open lots and free stall housing) and grazing operations in the seven major U.S. dairy producing states. Simulation modeling was carried out using the Integrated Farm Systems Model over 25 years of historic weather data. Dairies with a preference for importing feed and exporting manure, common for simulated dry lot dairies of the arid west, had lower nutrient use efficiencies at the farm gate than freestall and tie-stall dairies in humid climates. Phosphorus (P) use efficiencies ranged from 33 to 82% of imported P, while N use efficiencies were 25 to 50% of imported N. When viewed from a P budgeting perspective, environmental losses of P were generally negligible, especially from dry lot dairies. Opportunities for greater P use efficiency reside primarily in increasing on-farm feed production and reducing excess P in diets. In contrast with P, environmental losses of nitrogen (N) were 50 to 75% of annual farm N inputs. For dry lot dairies, the greatest potential for N conservation is associated with ammonia (NH3) control from housing, whereas for freestall and tie-stall operations, N conservation opportunities vary with soil and manure management system. Given that fertilizer expenses are equivalent to 2 to 6% of annual farm profits, cost incentives do exist to improve nutrient use efficiencies. However, augmenting on-farm feed production represents an even greater opportunity, especially on large operations with high animal unit densities

    The polycystic kidney disease 1 gene encodes a 14 kb transcript and lies within a duplicated region on chromosome 16

    Get PDF
    Autosomal dominant polycystic kidney disease (ADPKD) is a common genetic disorder that frequently results in renal fallure due to progressive cyst development. The major locus, PKD1, maps to 16p13.3. We identified a chromosome translocation associated with ADPKD that disrupts a gene (PBP) encoding a 14 kb transcript in the PKD1 candidate region. Further mutations of the PBP gene were found in PKD1 patients, two deletions (one a de novo event) and a splicing defect, confirming that PBP is the PKD1 gene. This gene is located adjacent to the TSC2 locus in a genomic region that is reiterated more proximally on 16p. The duplicate area encodes three transcripts substantially homologous to the PKD1 transcript. Partial sequence analysis of the PKD1 transcript shows that it encodes a novel protein whose function is at present unknown

    Clay mineralogy and magnetic susceptibility of Oxisols in geomorphic surfaces

    Get PDF
    Studies analyzing the variability of clay minerals and magnetic susceptibility provide data for the delineation of site-specific management areas since many of their attributes are important to agronomy and the environment. This study aimed to evaluate the spatial variability of clay minerals, magnetic susceptibility, adsorbed phosphorus and physical attributes in Oxisols of sandstones in different geomorphic surfaces. For that purpose, soil samples were collected every 25 m along a transect located within the area where the geomorphic surfaces were identified and mapped. The transect occupied the central portion of 500 ha, where it was also sampled for density purposes with one sample per six hectares. Soil samples were collected at a depth of 0.0-0.2 m. The results of the physical, chemical, mineralogical and magnetic susceptibility analyses were subjected to statistical and geostatistical analyses. The nature of the clay minerals and magnetic susceptibility was dependent on the variation of the soil parent material. High values of magnetic susceptibility were associated with the presence of maghemite and magnetite of coarse size. The spatial variability of crystallinity and the content of Fe oxides, as well as magnetic susceptibility, were dependent on the age of the geomorphic surfaces. The youngest surface had greater spatial variability of these attributes. The iron (goethite and hematite) and aluminum (gibbsite) oxides in the youngest geomorphic surface influenced the low values of soil density and high values of total pore volume, micropores and P adsorption. The characterization of the spatial variability of Fe oxides and susceptibility allowed for the delineation of homogeneous areas

    Delayed mucosal antiviral responses despite robust peripheral inflammation in fatal COVID-19

    Get PDF
    Background While inflammatory and immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in peripheral blood are extensively described, responses at the upper respiratory mucosal site of initial infection are relatively poorly defined. We sought to identify mucosal cytokine/chemokine signatures that distinguished coronavirus disease 2019 (COVID-19) severity categories, and relate these to disease progression and peripheral inflammation. Methods We measured 35 cytokines and chemokines in nasal samples from 274 patients hospitalized with COVID-19. Analysis considered the timing of sampling during disease, as either the early (0–5 days after symptom onset) or late (6–20 days after symptom onset) phase. Results Patients that survived severe COVID-19 showed interferon (IFN)-dominated mucosal immune responses (IFN-γ, CXCL10, and CXCL13) early in infection. These early mucosal responses were absent in patients who would progress to fatal disease despite equivalent SARS-CoV-2 viral load. Mucosal inflammation in later disease was dominated by interleukin 2 (IL-2), IL-10, IFN-γ, and IL-12p70, which scaled with severity but did not differentiate patients who would survive or succumb to disease. Cytokines and chemokines in the mucosa showed distinctions from responses evident in the peripheral blood, particularly during fatal disease. Conclusions Defective early mucosal antiviral responses anticipate fatal COVID-19 but are not associated with viral load. Early mucosal immune responses may define the trajectory of severe COVID-19

    Para-infectious brain injury in COVID-19 persists at follow-up despite attenuated cytokine and autoantibody responses

    Get PDF
    To understand neurological complications of COVID-19 better both acutely and for recovery, we measured markers of brain injury, inflammatory mediators, and autoantibodies in 203 hospitalised participants; 111 with acute sera (1–11 days post-admission) and 92 convalescent sera (56 with COVID-19-associated neurological diagnoses). Here we show that compared to 60 uninfected controls, tTau, GFAP, NfL, and UCH-L1 are increased with COVID-19 infection at acute timepoints and NfL and GFAP are significantly higher in participants with neurological complications. Inflammatory mediators (IL-6, IL-12p40, HGF, M-CSF, CCL2, and IL-1RA) are associated with both altered consciousness and markers of brain injury. Autoantibodies are more common in COVID-19 than controls and some (including against MYL7, UCH-L1, and GRIN3B) are more frequent with altered consciousness. Additionally, convalescent participants with neurological complications show elevated GFAP and NfL, unrelated to attenuated systemic inflammatory mediators and to autoantibody responses. Overall, neurological complications of COVID-19 are associated with evidence of neuroglial injury in both acute and late disease and these correlate with dysregulated innate and adaptive immune responses acutely

    Large-scale phenotyping of patients with long COVID post-hospitalization reveals mechanistic subtypes of disease

    Get PDF
    One in ten severe acute respiratory syndrome coronavirus 2 infections result in prolonged symptoms termed long coronavirus disease (COVID), yet disease phenotypes and mechanisms are poorly understood1. Here we profiled 368 plasma proteins in 657 participants ≥3 months following hospitalization. Of these, 426 had at least one long COVID symptom and 233 had fully recovered. Elevated markers of myeloid inflammation and complement activation were associated with long COVID. IL-1R2, MATN2 and COLEC12 were associated with cardiorespiratory symptoms, fatigue and anxiety/depression; MATN2, CSF3 and C1QA were elevated in gastrointestinal symptoms and C1QA was elevated in cognitive impairment. Additional markers of alterations in nerve tissue repair (SPON-1 and NFASC) were elevated in those with cognitive impairment and SCG3, suggestive of brain–gut axis disturbance, was elevated in gastrointestinal symptoms. Severe acute respiratory syndrome coronavirus 2-specific immunoglobulin G (IgG) was persistently elevated in some individuals with long COVID, but virus was not detected in sputum. Analysis of inflammatory markers in nasal fluids showed no association with symptoms. Our study aimed to understand inflammatory processes that underlie long COVID and was not designed for biomarker discovery. Our findings suggest that specific inflammatory pathways related to tissue damage are implicated in subtypes of long COVID, which might be targeted in future therapeutic trials

    SARS-CoV-2-specific nasal IgA wanes 9 months after hospitalisation with COVID-19 and is not induced by subsequent vaccination

    Get PDF
    BACKGROUND: Most studies of immunity to SARS-CoV-2 focus on circulating antibody, giving limited insights into mucosal defences that prevent viral replication and onward transmission. We studied nasal and plasma antibody responses one year after hospitalisation for COVID-19, including a period when SARS-CoV-2 vaccination was introduced. METHODS: In this follow up study, plasma and nasosorption samples were prospectively collected from 446 adults hospitalised for COVID-19 between February 2020 and March 2021 via the ISARIC4C and PHOSP-COVID consortia. IgA and IgG responses to NP and S of ancestral SARS-CoV-2, Delta and Omicron (BA.1) variants were measured by electrochemiluminescence and compared with plasma neutralisation data. FINDINGS: Strong and consistent nasal anti-NP and anti-S IgA responses were demonstrated, which remained elevated for nine months (p < 0.0001). Nasal and plasma anti-S IgG remained elevated for at least 12 months (p < 0.0001) with plasma neutralising titres that were raised against all variants compared to controls (p < 0.0001). Of 323 with complete data, 307 were vaccinated between 6 and 12 months; coinciding with rises in nasal and plasma IgA and IgG anti-S titres for all SARS-CoV-2 variants, although the change in nasal IgA was minimal (1.46-fold change after 10 months, p = 0.011) and the median remained below the positive threshold determined by pre-pandemic controls. Samples 12 months after admission showed no association between nasal IgA and plasma IgG anti-S responses (R = 0.05, p = 0.18), indicating that nasal IgA responses are distinct from those in plasma and minimally boosted by vaccination. INTERPRETATION: The decline in nasal IgA responses 9 months after infection and minimal impact of subsequent vaccination may explain the lack of long-lasting nasal defence against reinfection and the limited effects of vaccination on transmission. These findings highlight the need to develop vaccines that enhance nasal immunity. FUNDING: This study has been supported by ISARIC4C and PHOSP-COVID consortia. ISARIC4C is supported by grants from the National Institute for Health and Care Research and the Medical Research Council. Liverpool Experimental Cancer Medicine Centre provided infrastructure support for this research. The PHOSP-COVD study is jointly funded by UK Research and Innovation and National Institute of Health and Care Research. The funders were not involved in the study design, interpretation of data or the writing of this manuscript

    A Linear Programming Framework for Network Games

    Full text link
    In this paper we present a linear programming game that is motivated by the assignment game of Shapley and Shubik. This new game is a very natural generalization of many of the network optimization games that have been well studied in the past. We first show that for this general class of games the core is nonempty. In fact any dual optimal solution of the underlying linear programming probem gives rise to a core allocation. We also show that for a particular subclass of games (which include the assignment, max flow and location games) the core exactly coincides with the set of optimal dual solutions. Additionally we study the relationship between this linear programming game and the production game of Owen
    corecore