1,543 research outputs found

    The Top Priority: Precision Electroweak Physics from Low to High Energy

    Full text link
    Overall, the Standard Model describes electroweak precision data rather well. There are however a few areas of tension (charged current universality, NuTeV, (g-2)_\mu, b quark asymmetries), which I review emphasizing recent theoretical and experimental progress. I also discuss what precision data tell us about the Higgs boson and new physics scenarios. In this context, the role of a precise measurement of the top mass is crucial.Comment: 12 pages; invited talk at 21st International Symposium on Lepton and Photon Interactions at High Energies (LP 03), Batavia, Illinois, 11-16 Aug 200

    Smooth and non-smooth traveling wave solutions of some generalized Camassa-Holm equations

    Full text link
    In this paper we employ two recent analytical approaches to investigate the possible classes of traveling wave solutions of some members of a recently-derived integrable family of generalized Camassa-Holm (GCH) equations. A recent, novel application of phase-plane analysis is employed to analyze the singular traveling wave equations of three of the GCH NLPDEs, i.e. the possible non-smooth peakon and cuspon solutions. One of the considered GCH equations supports both solitary (peakon) and periodic (cuspon) cusp waves in different parameter regimes. The second equation does not support singular traveling waves and the last one supports four-segmented, non-smooth MM-wave solutions. Moreover, smooth traveling waves of the three GCH equations are considered. Here, we use a recent technique to derive convergent multi-infinite series solutions for the homoclinic orbits of their traveling-wave equations, corresponding to pulse (kink or shock) solutions respectively of the original PDEs. We perform many numerical tests in different parameter regime to pinpoint real saddle equilibrium points of the corresponding GCH equations, as well as ensure simultaneous convergence and continuity of the multi-infinite series solutions for the homoclinic orbits anchored by these saddle points. Unlike the majority of unaccelerated convergent series, high accuracy is attained with relatively few terms. We also show the traveling wave nature of these pulse and front solutions to the GCH NLPDEs

    Continuous dynamic response along a pre-existing structural discontinuity induced by the 2001 eruption at Mt. Etna

    Get PDF
    The intrusive process of the 2001 Mt. Etna eruption was accompanied by marked ground deformation and relevant seismic activity recorded between 12 and 17 of July (INGV-CT, 2001). At the same time, extensometer data evidenced the re-activation of a dry surface failure zone on the high south-eastern sector of Mt. Etna; this fracture system, formed in 1989, has been related to the propagation of a shallow blade-like dike along a NNESSW discontinuity (Bonaccorso and Davis, 1993; Bianco et al., 1998). The NNW-SSE discontinuity represents a complex low cohesion structure in which deformation may concentrate. Displacement measurements recorded on the surface fracture and the constraints obtained from seismicity show that the intrusion phase of the 2001 eruption has forced the NNE-SSW structure to move continuously with prevalent left-lateral displacement from a depth of 2–2.5 km b. s. l. to the surface with a compositive slip of about 3–5 centimeters

    Two-loop electroweak top corrections: are they under control?

    Get PDF
    The assumption that two-loop top corrections are well approximated by the O(Gmu2mt4)O(G_mu^2 mt^4) contribution is investigated. It is shown that in the case of the ratio neutral-to-charged current amplitudes at zero momentum transfer the O(Gmu2mt2MZ2)O(G_mu^2 mt^2 M_Z^2) terms are numerically comparable to the mt4m_t^4 contribution for realistic values of the top mass. An estimate of the theoretical error due to unknown two-loop top effect is presented for a few observables of LEP interest.Comment: 13 pages, LaTeX using equations, doublespace, cite macros. Hard copies of the paper including one figure are available from [email protected]

    Universal Unitarity Triangle and Physics Beyond the Standard Model

    Get PDF
    We make the simple observation that there exists a universal unitarity triangle for all models, like the SM, the Two Higgs Doublet Models I and II and the MSSM with minimal flavour violation, that do not have any new operators beyond those present in the SM and in which all flavour changing transitions are governed by the CKM matrix with no new phases beyond the CKM phase. This universal triangle can be determined in the near future from the ratio (Delta M)_d/(Delta M)_s and sin(2 beta) measured first through the CP asymmetry in B_d^0 to psi K_S and later in K to pi nu nubar decays. Also suitable ratios of the branching ratios for B to X_{d,s} nu nubar and B_{d,s} to mu^+ mu^- and the angle gamma measured by means of CP asymmetries in B decays can be used for this determination. Comparison of this universal triangle with the non-universal triangles extracted in each model using epsilon, (Delta M)_d and various branching ratios for rare decays will allow to find out in a transparent manner which of these models, if any, is singled out by experiment. A virtue of the universal triangle is that it allows to separate the determination of the CKM parameters from the determination of new parameters present in the extensions of the SM considered here.Comment: 12 pages, 1 figur

    Regular and Singular Pulse and Front Solutions and Possible Isochronous Behavior in the Short-Pulse Equation: Phase-Plane, Multi-Infinite Series and Variational Approaches

    Full text link
    In this paper we employ three recent analytical approaches to investigate the possible classes of traveling wave solutions of some members of a family of so-called short-pulse equations (SPE). A recent, novel application of phase-plane analysis is first employed to show the existence of breaking kink wave solutions in certain parameter regimes. Secondly, smooth traveling waves are derived using a recent technique to derive convergent multi-infinite series solutions for the homoclinic (heteroclinic) orbits of the traveling-wave equations for the SPE equation, as well as for its generalized version with arbitrary coefficients. These correspond to pulse (kink or shock) solutions respectively of the original PDEs. Unlike the majority of unaccelerated convergent series, high accuracy is attained with relatively few terms. And finally, variational methods are employed to generate families of both regular and embedded solitary wave solutions for the SPE PDE. The technique for obtaining the embedded solitons incorporates several recent generalizations of the usual variational technique and it is thus topical in itself. One unusual feature of the solitary waves derived here is that we are able to obtain them in analytical form (within the assumed ansatz for the trial functions). Thus, a direct error analysis is performed, showing the accuracy of the resulting solitary waves. Given the importance of solitary wave solutions in wave dynamics and information propagation in nonlinear PDEs, as well as the fact that not much is known about solutions of the family of generalized SPE equations considered here, the results obtained are both new and timely.Comment: accepted for publication in Communications in Nonlinear Science and Numerical Simulatio

    QCD corrections to the Wilson coefficients C9 and C10 in two-Higgs doublet models

    Get PDF
    In this letter we present the analytic results for the two-loop corrections to the Wilson coefficients C_9(mu_W) and C_10(mu_W) in type-I and type-II two-Higgs-doublet models at the matching scale mu_W. These corrections are important ingredients for next-to-next-to-leading logarithmic predictions of various observables related to the decays B -> X_s l^+ l^- in these models. In scenarios with moderate values of tan(beta) neutral Higgs boson contributions can be safely neglected for e,mu. Therefore we concentrate on the contributions mediated by charged Higgs bosons.Comment: 12 pages, 3 figure

    High precision locations of long-period events at La Fossa Crater (Vulcano Island, Italy)

    Get PDF
    Since the last eruption in 1888-90, the volcanic activity on Vulcano Island (Aeolian Archipelago, Italy) has been limited to fumarolic degassing. Fumaroles are mainly concentred at the active cone of La Fossa in the northern sector of the island and are periodically characterized by increases in the temperature as well as in the amount of both CO2 and He .Seismic background activity at Vulcano is dominated by micro-seismicity originating at shallow depth (<1-1.5 km) under La Fossa cone. This seismicity is related to geothermal system processes and comprises long period (LP) events. LPs are generally considered as the resonance of a fluid-filled volume in response to a trigger. We analyzed LP events recorded during an anomalous degassing period (August-October 2006) applying a high precision technique to define the shape of the trigger source. Absolute and high precision locations suggest that LP events recorded at Vulcano, during 2006, were produced by a shallow focal zone ca. 200 m long, 40 m wide and N30-40E oriented. Their occurrence is linked to magmatic fluid inputs that by modifying the hydrothermal system cause excitation of a fluid-filled cavity
    • …
    corecore