236 research outputs found

    Again, Linearizable Mappings

    Full text link
    We examine a family of 3-point mappings that include mappings solvable through linearization. The different origins of mappings of this type are examined: projective equations and Gambier systems. The integrable cases are obtained through the application of the singularity confinement criterion and are explicitly integrated.Comment: 14 pages, no figures, to be published in Physica

    The Gambier Mapping

    Full text link
    We propose a discrete form for an equation due to Gambier and which belongs to the class of the fifty second order equations that possess the Painleve property. In the continuous case, the solutions of the Gambier equation is obtained through a system of Riccati equations. The same holds true in the discrete case also. We use the singularity confinement criterion in order to study the integrability of this new mapping.Comment: PlainTe

    Discrete and Continuous Linearizable Equations

    Full text link
    We study the projective systems in both continuous and discrete settings. These systems are linearizable by construction and thus, obviously, integrable. We show that in the continuous case it is possible to eliminate all variables but one and reduce the system to a single differential equation. This equation is of the form of those singled-out by Painlev\'e in his quest for integrable forms. In the discrete case, we extend previous results of ours showing that, again by elimination of variables, the general projective system can be written as a mapping for a single variable. We show that this mapping is a member of the family of multilinear systems (which is not integrable in general). The continuous limit of multilinear mappings is also discussed.Comment: Plain Tex file, 14 pages, no figur

    Constructing Integrable Third Order Systems:The Gambier Approach

    Full text link
    We present a systematic construction of integrable third order systems based on the coupling of an integrable second order equation and a Riccati equation. This approach is the extension of the Gambier method that led to the equation that bears his name. Our study is carried through for both continuous and discrete systems. In both cases the investigation is based on the study of the singularities of the system (the Painlev\'e method for ODE's and the singularity confinement method for mappings).Comment: 14 pages, TEX FIL

    Discrete systems related to some equations of the Painlev\'e-Gambier classification

    Full text link
    We derive integrable discrete systems which are contiguity relations of two equations in the Painlev\'e-Gambier classification depending on some parameter. These studies extend earlier work where the contiguity relations for the six transcendental Painlev\'e equations were obtained. In the case of the Gambier equation we give the contiguity relations for both the continuous and the discrete system.Comment: 10 page

    Bilinear Discrete Painleve-II and its Particular Solutions

    Full text link
    By analogy to the continuous Painlev\'e II equation, we present particular solutions of the discrete Painlev\'e II (d-PII\rm_{II}) equation. These solutions are of rational and special function (Airy) type. Our analysis is based on the bilinear formalism that allows us to obtain the Ď„\tau function for d-PII\rm_{II}. Two different forms of bilinear d-PII\rm_{II} are obtained and we show that they can be related by a simple gauge transformation.Comment: 9 pages in plain Te

    Integrable systems without the Painlev\'e property

    Full text link
    We examine whether the Painlev\'e property is a necessary condition for the integrability of nonlinear ordinary differential equations. We show that for a large class of linearisable systems this is not the case. In the discrete domain, we investigate whether the singularity confinement property is satisfied for the discrete analogues of the non-Painlev\'e continuous linearisable systems. We find that while these discrete systems are themselves linearisable, they possess nonconfined singularities

    The Bianchi Ix (MIXMASTER) Cosmological Model is Not Integrable

    Full text link
    The perturbation of an exact solution exhibits a movable transcendental essential singularity, thus proving the nonintegrability. Then, all possible exact particular solutions which may be written in closed form are isolated with the perturbative Painlev\'e test; this proves the inexistence of any vacuum solution other than the three known ones.Comment: 14 pages, no figure

    Singularity confinement and algebraic integrability

    Full text link
    Two important notions of integrability for discrete mappings are algebraic integrability and singularity confinement, have been used for discrete mappings. Algebraic integrability is related to the existence of sufficiently many conserved quantities whereas singularity confinement is associated with the local analysis of singularities. In this paper, the relationship between these two notions is explored for birational autonomous mappings. Two types of results are obtained: first, algebraically integrable mappings are shown to have the singularity confinement property. Second, a proof of the non-existence of algebraic conserved quantities of discrete systems based on the lack of confinement property is given.Comment: 18 pages, no figur

    B\"acklund transformations for the second Painlev\'e hierarchy: a modified truncation approach

    Full text link
    The second Painlev\'e hierarchy is defined as the hierarchy of ordinary differential equations obtained by similarity reduction from the modified Korteweg-de Vries hierarchy. Its first member is the well-known second Painlev\'e equation, P2. In this paper we use this hierarchy in order to illustrate our application of the truncation procedure in Painlev\'e analysis to ordinary differential equations. We extend these techniques in order to derive auto-B\"acklund transformations for the second Painlev\'e hierarchy. We also derive a number of other B\"acklund transformations, including a B\"acklund transformation onto a hierarchy of P34 equations, and a little known B\"acklund transformation for P2 itself. We then use our results on B\"acklund transformations to obtain, for each member of the P2 hierarchy, a sequence of special integrals.Comment: 12 pages in LaTeX 2.09 (uses ioplppt.sty), to appear in Inverse Problem
    • …
    corecore