146 research outputs found

    Identification of Synaptic Targets of Drosophila Pumilio

    Get PDF
    Drosophila Pumilio (Pum) protein is a translational regulator involved in embryonic patterning and germline development. Recent findings demonstrate that Pum also plays an important role in the nervous system, both at the neuromuscular junction (NMJ) and in long-term memory formation. In neurons, Pum appears to play a role in homeostatic control of excitability via down regulation of para, a voltage gated sodium channel, and may more generally modulate local protein synthesis in neurons via translational repression of eIF-4E. Aside from these, the biologically relevant targets of Pum in the nervous system remain largely unknown. We hypothesized that Pum might play a role in regulating the local translation underlying synapse-specific modifications during memory formation. To identify relevant translational targets, we used an informatics approach to predict Pum targets among mRNAs whose products have synaptic localization. We then used both in vitro binding and two in vivo assays to functionally confirm the fidelity of this informatics screening method. We find that Pum strongly and specifically binds to RNA sequences in the 3′UTR of four of the predicted target genes, demonstrating the validity of our method. We then demonstrate that one of these predicted target sequences, in the 3′UTR of discs large (dlg1), the Drosophila PSD95 ortholog, can functionally substitute for a canonical NRE (Nanos response element) in vivo in a heterologous functional assay. Finally, we show that the endogenous dlg1 mRNA can be regulated by Pumilio in a neuronal context, the adult mushroom bodies (MB), which is an anatomical site of memory storage

    Identification of Synaptic Targets of Drosophila Pumilio

    Get PDF
    Drosophila Pumilio (Pum) protein is a translational regulator involved in embryonic patterning and germline development. Recent findings demonstrate that Pum also plays an important role in the nervous system, both at the neuromuscular junction (NMJ) and in long-term memory formation. In neurons, Pum appears to play a role in homeostatic control of excitability via down regulation of para, a voltage gated sodium channel, and may more generally modulate local protein synthesis in neurons via translational repression of eIF-4E. Aside from these, the biologically relevant targets of Pum in the nervous system remain largely unknown. We hypothesized that Pum might play a role in regulating the local translation underlying synapse-specific modifications during memory formation. To identify relevant translational targets, we used an informatics approach to predict Pum targets among mRNAs whose products have synaptic localization. We then used both in vitro binding and two in vivo assays to functionally confirm the fidelity of this informatics screening method. We find that Pum strongly and specifically binds to RNA sequences in the 3′UTR of four of the predicted target genes, demonstrating the validity of our method. We then demonstrate that one of these predicted target sequences, in the 3′UTR of discs large (dlg1), the Drosophila PSD95 ortholog, can functionally substitute for a canonical NRE (Nanos response element) in vivo in a heterologous functional assay. Finally, we show that the endogenous dlg1 mRNA can be regulated by Pumilio in a neuronal context, the adult mushroom bodies (MB), which is an anatomical site of memory storage

    Survival Risk Scores for Real-Life Relapsed/Refractory Multiple Myeloma Patients Receiving Elotuzumab or Carfilzomib In Combination With Lenalidomide and Dexamethasone as Salvage Therapy: Analysis of 919 Cases Outside Clinical Trials

    Get PDF
    The present study aimed to develop two survival risk scores (RS) for overall survival (OS, SRSKRd/EloRd) and progression-free survival (PFS, PRSKRd/EloRd) in 919 relapsed/refractory multiple myeloma (RRMM) patients who received carfilzomib, lenalidomide, and dexamethasone (KRd)/elotuzumab, lenalidomide, and dexamethasone (EloRd). The median OS was 35.4 months, with no significant difference between the KRd arm versus the EloRd arm. In the multivariate analysis, advanced ISS (HR = 1.31; P = 0.025), interval diagnosis–therapy (HR = 1.46; P = 0.001), number of previous lines of therapies (HR = 1.96; P < 0.0001), older age (HR = 1.72; P < 0.0001), and prior lenalidomide exposure (HR = 1.30; P = 0.026) remained independently associated with death. The median PFS was 20.3 months, with no difference between the two strategies. The multivariate model identified a significant progression/death risk increase for ISS III (HR = 1.37; P = 0.002), >3 previous lines of therapies (HR = 1.67; P < 0.0001), older age (HR = 1.64; P < 0.0001), and prior lenalidomide exposure (HR = 1.35; P = 0.003). Three risk SRSKRd/EloRd categories were generated: low-risk (134 cases, 16.5%), intermediate-risk (467 cases, 57.3%), and high-risk categories (213 cases, 26.2%). The 1- and 2-year OS probability rates were 92.3% and 83.8% for the low-risk (HR = 1, reference category), 81.1% and 60.6% (HR = 2.73; P < 0.0001) for the intermediate-risk, and 65.5% and 42.5% (HR = 4.91; P < 0.0001) for the high-risk groups, respectively. Notably, unlike the low-risk group, which did not cross the median timeline, the OS median values were 36.6 and 18.6 months for the intermediate- and high-risk cases, respectively. Similarly, three PRSKRd/EloRd risk categories were engendered. Based on such grouping, 338 (41.5%) cases were allocated in the low-, 248 (30.5%) in the intermediate-, and 228 (28.0%) in the high-risk groups. The 1- and 2-year PFS probability rates were 71.4% and 54.5% for the low-risk (HR = 1, reference category), 68.9% and 43.7% (HR = 1.95; P < 0.0001) for the intermediate-risk, and 48.0% and 27.1% (HR = 3.73; P < 0.0001) for the high-risk groups, respectively. The PFS median values were 29.0, 21.0, and 11.7 months for the low-, intermediate-, and high-risk cases. This analysis showed 2.7- and 4.9-fold increased risk of death for the intermediate- and high-risk cases treated with KRd/EloRd as salvage therapy. The combined progression/death risks of the two categories were increased 1.3- and 2.2-fold compared to the low-risk group. In conclusion, SRSKRd/EloRd and PRSKRd/EloRd may represent accessible and globally applicable models in daily clinical practice and ultimately represent a prognostic tool for RRMM patients who received KRd or EloRd

    IL21R expressing CD14+CD16+ monocytes expand in multiple myeloma patients leading to increased osteoclasts

    Get PDF
    Bone marrow monocytes are primarily committed to osteoclast formation. It is, however, unknown whether potential primary alterations are specifically present in bone marrow monocytes of multiple myeloma patients, smoldering myeloma or monoclonal gammopathy of uncertain significance. Herein, we analyzed the immunophenotypic and transcriptional profiles of bone marrow CD14+ monocytes in a cohort of patients with different types of monoclonal gammopathies to identify alterations involved in myeloma-enhanced osteoclastogenesis. A higher number of bone marrow CD14+CD16+ cells was found in patients with active myeloma as compared to those with smoldering myeloma and monoclonal gammopathy of uncertain significance. Interestingly, sorted bone marrow CD14+CD16+ cells from myeloma patients were more pro-osteoclastogenic than CD14+CD16- cells in cultures ex vivo. Moreover, transcriptional analysis demonstrated that bone marrow multiple myeloma (but neither monoclonal gammopathy of uncertain significance nor smoldering myeloma) CD14+ cells significantly upregulated genes involved in osteoclast formation, including IL21R. IL21R mRNA over-expression by bone marrow CD14+ cells was independent from the presence of IL-21. Consistently, IL-21 production by T cells as well as IL-21 bone marrow levels were not significantly different among monoclonal gammopathies. Thereafter, we showed that IL21R over-expression in CD14+ cells increased osteoclast formation. Consistently, IL-21R signaling inhibition by Janex 1 suppressed osteoclast differentiation from bone marrow CD14+ cells of myeloma patients. Our results indicated that multiple myeloma patients showed distinct bone marrow monocyte features compared to those with indolent monoclonal gammopathies, supporting the role of IL21R over-expression by bone marrow CD14+ cells in enhanced osteoclast formation

    Expression analysis of genes associated with human osteosarcoma tumors shows correlation of RUNX2 overexpression with poor response to chemotherapy

    Get PDF
    Background: Human osteosarcoma is the most common pediatric bone tumor. There is limited understanding of the molecular mechanisms underlying osteosarcoma oncogenesis, and a lack of good diagnostic as well as prognostic clinical markers for this disease. Recent discoveries have highlighted a potential role of a number of genes including: RECQL4, DOCK5, SPP1, RUNX2, RB1, CDKN1A, P53, IBSP, LSAMP, MYC, TNFRSF1B, BMP2, HISTH2BE, FOS, CCNB1, and CDC5L. Methods: Our objective was to assess relative expression levels of these 16 genes as potential biomarkers of osteosarcoma oncogenesis and chemotherapy response in human tumors. We performed quantitative expression analysis in a panel of 22 human osteosarcoma tumors with differential response to chemotherapy, and 5 normal human osteoblasts.Results: RECQL4, SPP1, RUNX2, and IBSP were significantly overexpressed, and DOCK5, CDKN1A, RB1, P53, and LSAMP showed significant loss of expression relative to normal osteoblasts. In addition to being overexpressed in osteosarcoma tumor samples relative to normal osteoblasts, RUNX2 was the only gene of the 16 to show significant overexpression in tumors that had a poor response to chemotherapy relative to good responders. Conclusion: These data underscore the loss of tumor suppressive pathways and activation of specific oncogenic mechanisms associated with osteosarcoma oncogenesis, while drawing attention to the role of RUNX2 expression as a potential biomarker of chemotherapy failure in osteosarcoma. © 2010 Sadikovic et al; licensee BioMed Central Ltd
    • …
    corecore