250 research outputs found

    MarciaTesta: An Automatic Generator of Test Programs for Microprocessors' Data Caches

    Get PDF
    SBST (Software Based Self-Testing) is an effective solution for in-system testing of SoCs without any additional hardware requirement. SBST is particularly suited for embedded blocks with limited accessibility, such as cache memories. Several methodologies have been proposed to properly adapt existing March algorithms to test cache memories. Unfortunately they all leave the test engineers the task of manually coding them into the specific Instruction Set Architecture (ISA) of the target microprocessor. We propose an EDA tool for the automatic generation of assembly cache test program for a specific architectur

    Validation & Verification of an EDA automated synthesis tool

    Get PDF
    Reliability and correctness are two mandatory features for automated synthesis tools. To reach the goals several campaigns of Validation and Verification (V&V) are needed. The paper presents the extensive efforts set up to prove the correctness of a newly developed EDA automated synthesis tool. The target tool, MarciaTesta, is a multi-platform automatic generator of test programs for microprocessors' caches. Getting in input the selected March Test and some architectural details about the target cache memory, the tool automatically generates the assembly level program to be run as Software Based Self-Testing (SBST). The equivalence between the original March Test, the automatically generated Assembly program, and the intermediate C/C++ program have been proved resorting to sophisticated logging mechanisms. A set of proved libraries has been generated and extensively used during the tool development. A detailed analysis of the lessons learned is reporte

    An area-efficient 2-D convolution implementation on FPGA for space applications

    Get PDF
    The 2-D Convolution is an algorithm widely used in image and video processing. Although its computation is simple, its implementation requires a high computational power and an intensive use of memory. Field Programmable Gate Arrays (FPGA) architectures were proposed to accelerate calculations of 2-D Convolution and the use of buffers implemented on FPGAs are used to avoid direct memory access. In this paper we present an implementation of the 2-D Convolution algorithm on a FPGA architecture designed to support this operation in space applications. This proposed solution dramatically decreases the area needed keeping good performance, making it appropriate for embedded systems in critical space application

    Social network data analysis to highlight privacy threats in sharing data

    Get PDF
    AbstractSocial networks are a vast source of information, and they have been increasing impact on people's daily lives. They permit us to share emotions, passions, and interactions with other people around the world. While enabling people to exhibit their lives, social networks guarantee their privacy. The definitions of privacy requirements and default policies for safeguarding people's data are the most difficult challenges that social networks have to deal with. In this work, we have collected data concerning people who have different social network profiles, aiming to analyse privacy requirements offered by social networks. In particular, we have built a tool exploiting image-recognition techniques to recognise a user from his/her picture, aiming to collect his/her personal data accessible through social networks where s/he has a profile. We have composed a dataset of 5000 users by combining data available from several social networks; we compared social network data mandatory in the registration phases, publicly accessible and those retrieved by our analysis. We aim to analyse the amount of extrapolated data for evaluating privacy threats when users share information on different social networks to help them be aware of these aspects. This work shows how users data on social networks can be retrieved easily by representing a clear privacy violation. Our research aims to improve the user's awareness concerning the spreading and managing of social networks data. To this end, we highlighted all the statistical evaluations made over the gathered data for putting in evidence the privacy issues

    SA-FEMIP: A Self-Adaptive Features Extractor and Matcher IP-Core Based on Partially Reconfigurable FPGAs for Space Applications

    Get PDF
    Video-based navigation (VBN) is increasingly used in space applications to enable autonomous entry, descent, and landing of aircrafts. VBN algorithms require real-time performances and high computational capabilities, especially to perform features extraction and matching (FEM). In this context, field-programmable gate arrays (FPGAs) can be employed as efficient hardware accelerators. This paper proposes an improved FPGA-based FEM module. Online self-adaptation of the parameters of both the image noise filter and the features extraction algorithm is adopted to improve the algorithm robustness. Experimental results demonstrate the effectiveness of the proposed self-adaptive module. It introduces a marginal resource overhead and no timing performance degradation when compared with the reference state-of-the-art architecture

    SATTA: a Self-Adaptive Temperature-based TDF awareness methodology for dynamically reconfigurable FPGAs

    Get PDF
    Dependability issues due to non functional properties are emerging as major cause of faults in modern digital systems. Effective countermeasures have to be presented to properly manage their critical timing effects. This paper presents a methodology to avoid transition delay faults in FPGA-based systems, with low area overhead. The approach is able to exploit temperature information and aging characteristics to minimize the cost in terms of performances degradation and power consumption. The architecture of a hardware manager able to avoid delay faults is presented and deeply analyzed, as well as its integration in the standard implementation design flow

    Dependable Dynamic Partial Reconfiguration with minimal area & time overheads on Xilinx FPGAS

    Get PDF
    Thanks to their flexibility, FPGAs are nowadays widely used to implement digital systems' prototypes and, more frequently, their final releases. Reconfiguration traditionally required an external controller to upload contents in the FPGA. Dynamic Partial Reconfiguration (DPR) opens new horizons in FPGAs' applications, providing many new utilization paradigms, as it enables an FPGA to reconfigure itself: no external controller is required since it can be included in the FPGA. However, DPR also introduces reliability issues related to errors in the partial reconfiguration bitstreams. FPGA manufacturers currently provide solutions that are not efficient. In this paper new DfD (Design for Dependability) techniques are proposed. Exploiting information density of configuration data, they improve the performance while providing the same reliability characteristics as the previous one

    FEMIP: A high performance FPGA-based features extractor & matcher for space applications

    Get PDF
    Nowadays, Video-Based Navigation (VBN) is increasingly used in space-applications. The future space-missions will include this approach during the Entry, Descent and Landing (EDL) phase, in order to increase the landing point precision. This paper presents FEMIP: a high performance FPGA-based features extractor and matcher tuned for space applications. It outperforms the current state-of-the-art, ensuring a higher throughput and a lower hardware resources usage

    SAFE: a Self Adaptive Frame Enhancer FPGA-based IP-core for real-time space applications

    Get PDF
    Video-based navigation is an increasingly used procedure with hard real-time requirements and high computational effort. In this field, FPGA hardware accelleration supplyes low-cost and considerable performances enhancement. The video-based navigation algorithms extrapolate and correlates features from images, relying on their accuracy. Image enhancement provides more defined and contrasted frames, assuring high precision feature extraction. This work introduces an FPGA-based self-adaptive image enhancer. The IP-core is suitable for hard-real time applications, such as space applications, thanks to the guaranteed high-throughput

    SAFE: a Self Adaptive Frame Enhancer FPGA-based IP-core for real-time space applications

    Get PDF
    Video-based navigation is an increasingly used procedure with hard real-time requirements and high computational effort. In this field, FPGA hardware accelleration supplyes low-cost and considerable performances enhancement. The video-based navigation algorithms extrapolate and correlates features from images, relying on their accuracy. Image enhancement provides more defined and contrasted frames, assuring high precision feature extraction. This work introduces an FPGA-based self-adaptive image enhancer. The IP-core is suitable for hard-real time applications, such as space applications, thanks to the guaranteed high-throughpu
    corecore