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Abstract—Video-based navigation is an increasingly used pro-
cedure with hard real-time requirements and high computational
effort. In this field, FPGA hardware acceleration supplies low-
cost and considerable performances enhancement. Video-based
navigation algorithms extrapolate and correlate features from
images, relying on their accuracy. Image enhancement provides
more defined and contrasted frames, assuring high precision
feature extraction. The paper introduces an FPGA-based self-
adaptive image enhancer. The IP-core is suitable for hard-real
time applications, such as space applications, thanks to the
guaranteed high-throughput.

I. INTRODUCTION

Video-based navigation (VBN) is a well-studied area of
computer vision, spanning many application fields including
robotics [1], unmanned vehicles [2], automotive [3] and med-
ical [4]. VBN is also gaining increased importance in space-
applications. Future space-missions will increasingly adopt
VBN systems to assist the Entry, Descent and Landing (EDL)
phase of space modules (e.g., spacecrafts), thus enhancing the
precision of automatic EDL navigation systems.
The information required to estimate the motion of the ve-
hicle are extracted from consecutive images. For each image
special features (e.g., edges, corners) are extracted. Then, the
matching task correlates the features extracted between two
consecutive images to estimate the relative motion.
The Feature Extraction and Matching (FEM) must be per-
formed at a very high speed, in order to guarantee a high
frame rate. This task is often accelerated by hardware modules
to satisfy hard real-time requirements. These modules are in-
creasingly implemented resorting to FPGA devices, exploiting
FPGA flexibility and very low Non Recurrent Engineering
(NRE) costs. This trend is true for both commercial and
mission critical applications, such as aerospace [5].
When employed in peculiar environments, VBN systems re-
quire ad-hoc methodologies to aware the EDL system from
noise and unknown conditions (i.e., illumination intensity and
light direction). In fact, in these situations the FEM algorithms
could produce fake results that may led to a reduced motion
estimation accuracy, or even, in the worst case, destructive and
irreversible events.

To overcome such problems, image enhancement algorithms
are required before feeding the FEM module with the acquired
frames from the on-board camera.
Image enhancement processes include a collection of tech-
niques that improve the appearance of an image. The image
is modified to achieve a better suited image for subsequent
analysis (i.e., FEM).
Image enhancement can be performed in intensity, spatial or
frequency domains. Among the available techniques, the ones
that better improve FEM algorithms are those working in the
intensity domain.
Histogram Equalization and Histogram Stretching [6] proved
to be two of the most effective Image Enhancement Techniques
(IET).
An image histogram is a graphical representation of the tonal
distribution in a digital image. It plots the number of pixels
in the image (vertical axis) that present a particular intensity
value (horizontal axis).
Histogram Equalization (HE), in particular Linear HE, changes
the intensity value of each pixel to produce a new image with a
more uniform image histogram (i.e., the image covers most of
the brightness dynamic range). A better distributed histogram
increases the image contrast, especially if the original image
has close intensity values. The method is useful in images with
backgrounds and foregrounds that are both bright or both dark,
since these images are characterized by narrow and smoothed
histograms.
The Histogram Stretching (HS) technique is based on re-
distribution of the pixel intensities to spread their values
on the entire spectrum of colors. It increases the contrast
among pixels, but it becomes uneffective when the input image
features a wide histogram.
Both HE and HS are based on the statistics of the entire image.
They require a high computational effort, since repetitive
operations must be performed on each pixel. For a hardware
implementation, after the image is analyzed, a complete buffer-
ing of the image is needed to apply the transformation, leading
to a significant increase of memory occupation and latency
(see Section II).
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This work proposes SAFE: a Self Adaptive Frame Enhancer
FPGA-based IP-core for real-time applications. It presents a
novel self adaptive algorithm which avoids the need of image
buffering and local storing.
SAFE avoids the internal buffering of the image, because
the enhancement is performed on the basis of tone statistics
gathered from the previous image (i.e., histogram associated
to the previous processed frame). This approach introduces
a negligible error (see Section IV) thanks to the limited
differences between two consecutive frames, guaranteed by the
high frame rate reachable by SAFE. This high throughput is
achieved exploiting a highly parallelized internal architecture.
Moreover, unlike previous works, SAFE is able to au-
tonomously select the best IET to be applied. This significantly
improves its applicability to several different environmental
conditions.
Thanks to its high throughput, SAFE is a suitable option to
enhance image quality and to improve the performances of the
FEM algorithms, without impacting the overall system latency.
The paper is organized as follows: in section II the actual state-
of-the-art is analyzed; in section III the proposed mathematical
algorithm and the SAFE internal architecture are described; in
section IV experimental results are reported and, in section V,
conclusions are drawn.

II. RELATED WORK

Many FPGA implementations of image enhancement
algorithms have been proposed: [7] [8] [9] [10].
In [7] brightness control, contrast adjustment and histogram
equalization FPGA implementations are presented. Low area
occupation is shown but the complete image (100x100 pixels)
has to be internally stored.
In [8] a very efficient real-time HE technique is presented.
The smart transformation function is implemented thanks to
256 16-bit counters and a enabling hierarchical decoder. This
approach clearly increases the resource usage. Furthermore,
the complete image (256x256 pixels) is stored in a 64 kb
ROM in the FPGA device.
[9] presents an Adaptive Histogram Equalization (AHE)
algorithm: a method for the local contrast enhancement
based on bilinear interpolation. The area occupation of the
proposed AHE is considerable and the noise in background
homogeneous regions is amplified.
[10] presents an implementation of Contrast Limited
Adaptive Histogram Equalization (CLAHE) that limits the
noise increment provided by AHE. The drawback is that a
great amount of internal memory is required to store data for
the bilinear interpolation.

III. SAFE ARCHITECTURE

SAFE is a highly parallelized FPGA-based IP core that
receives in input a 1024x1024 grey scale image (e.g., from
a CMOS camera) and outputs the enhanced image. SAFE has
a standard 32-bit input interface, making it compliant with
the most common bus interfaces. Input pixels are received as

a set of 32-bit packets, without any header or padding bit.
Thus, four pixels can be received in parallel from a standard
camera with 8 bit-per-pixel (bpp) resolution. Also, SAFE
receives in input two parameters: HW and BW. HW defines
the threshold associated with the histogram width (i.e., the
distance between the minimum and maximum intensity inside
the image histogram). BW defines the threshold referred to the
difference between two consecutive image histogram bar (HB)
values. These two parameters are required for automatically
selecting the best frame enhancement technique (i.e., HS or
HE), depending on the input image statistics.
SAFE is composed of three main blocks (Fig. 1): the His-
togram Calculator, the Histogram Analyzer and the Equalizer
/ Stretcher.

Figure 1: SAFE block diagram

The Histogram Calculator computes the histogram of the input
image, providing the value of each bar. It simply counts the
occurrence of each pixel intensity, in order to compute the bar
values.
The Histogram Analyzer analyzes the image histogram in
order to select the best IET to be applied. It scans the
histogram to find the minimum and maximum intensities and
the maximum difference between two consecutive bar values.
By comparing this two quantities with the HW and BW
thresholds, it selects the best IET (see Alg. 1).
The Equalizer / Stretcher performs both HE and HS on the
input image, but it provides in output the image enhanced by
the algorithm selected by the Histogram Analyzer.
For the sake of completeness, in the sequel, the mathematical
operations required by the two enhancement algorithms are
summarized.
The HS transformation function is reported in (1).

IStretched(x, y) = C · (I(x, y)−min_HB) (1)

where IStretched(x, y) is the stretched pixel intensity in the
(x, y) position, I(x, y) is the pixel intensity in the (x, y)
position, min_HB is the minimum intensity in the previous
image histogram, and C is a scale factor equal to:

C =
2bpp − 1

max_HB −min_HB
(2)

In (2) max_HB is the maximum intensity value in the pre-
vious image histogram and bpp is the bit-per-pixel resolution.
The transformation function performed during HE is:

IEqualized(x, y) = k ·
I(x,y)∑

j=0

HBj (3)



Algorithm 1 Histogram Analyzer operations
found ← FALSE
max_BW ← 0
previous_HB ← HB(0)
for i = 0 → 255 do

if (HB(i) ̸= 0) ∧ (found = FALSE) then
min_HB ← HB(i)
found ← TRUE

end if
actual_BW ←| HB(i)− previous_HB |
if actual_BW > max_BW then

max_BW ← actual_BW
end if
previous_HB ← HB(i)

end for
found ← FALSE
for ((i = 255 → 0) ∧ (find = FALSE)) do

if HB(i) ̸= 0 then
max_HB ← HB(i)
found ← TRUE

end if
end for
real_HW ← max_HB −min_HB
if (real_HW < HW ) ∧ (max_BW > BW ) then

IET ← HS
else

IET ← HE
end if

where IEqualized(x, y) is the equalized pixel intensity in the
(x, y) position, HBj is the value of the j-th HB and k is equal
to:

k =
2bpp − 1

1024 ∗ 1024 (4)

In the following subsections all the implementation details of
the SAFE modules are deeply analyzed.

A. Histogram Calculator
The Histogram Calculator module gets in input the pixels

of the image through a 32-bit interface. Since each pixel of
the received image is represented by 8 bits, 4 pixels can be
analyzed in parallel, to speed up the computation task.
This module outputs the values associated with the HBs, that
are then buffered in the next module (see Section III-B).
The parallel internal architecture of the Histogram Calculator
is shown in Fig. 2.
It is composed of 4 BRAM Buffers, 4 20-bits adders, a 4
inputs 20-bits adder, 4 2-to-1 8 bits multiplexers, 4 2-to-1
20 bits multiplexers and a Controller that manages the overall
histogram computation process.
The histogram computation is performed in two steps. First,
the Controller sets to zero the reset signal. In this way input
pixels act as addressing signal for the 4 BRAM Buffers. Buffers
are implemented as dual-port Block RAMs, provided by Xilinx
FPGA Virtex architectures [11]. Each BRAM Buffer has a

Figure 2: Histogram Calculator internal architecture

dimension of 512 rows x 32-bit.
The 32-bit input packets are split into 4 8-bit words, each
representing a pixel value. Each received pixel addresses the
BRAM Buffer associated with its position in the input packet
(e.g., the pixel in the least significant byte of the input packet
addresses the BRAM Buffer 0). The value of the location
addressed by the input pixel value is read, incremented, and
then rewritten in the same location in a single clock cycle
exploiting the dual-port nature of the buffer. In this way, each
buffer row acts as a counter.
When an entire image is received, each buffer row contains a
partial HB value.
In the second computation step, the partial HBs are merged
to compute the image histogram. BRAM Buffers are scanned
starting from location 0. At each clock cycle, the 4 partial HB
values are read and summed. In this way, the final value of
each HB is computed. After each location has been read, it is
forced to 0. This ensures that counters are resetted to the initial
conditions, allowing the computation of a new histogram.
In addition to HB values, the Histogram Calculator outputs
the HA and the HD signals. The former represents the index
associated with the output HB value, while the latter is asserted
when the histogram calculation task is completed.
The first computation step performed by the Histogram Cal-
culator requires the number of clock cycles needed to receive
1024x1024 pixels, while the second step requires only 256
clock cycles to read the buffers. Thus, the total number
of clock cycles required by the Histogram Calculator for
computing the image histogram counts up to:

Nclock =
1024 ∗ 1024

4
+ 256 = 262400 (5)

B. Histogram Analyzer
The Histogram Analyzer receives in input HBs, HA and HD

signals from the Histogram Calculator module. In addition, it
receives the two SAFE input thresholds: BW and HW. This



module extracts, from the image histogram associated with
the previous frame, all the information required to calculate
and select the best IET to be applied to the current frame.
The internal architecture of the Histogram Analyzer module
is shown in Fig. 3.

Figure 3: Histogram Analyzer internal architecture

The module is composed of three main components: the
Histogram Buffer, the BW Calculator and the HW Calculator.
The Histogram Buffer is implemented using a BRAM, required
to store the complete histogram. Each HB received from the
previous module is stored into a BRAM row. During this
phase, HD is 0, thus HA acts as an address signal for the
data_in port.
When the entire histogram is stored, the HD signal is asserted
and the histogram analysis can start. During this phase, HW
Calculator and BW Calculator work in parallel.
The HW Calculator performs two tasks: it finds the minimum
and the maximum intensity values in the image histogram and
it computes the histogram width. First, it scans the Histogram
Buffer to find the first non-zero value, that represents the
minimum intensity value (i.e., min_HB). Then, the same
operation is repeated in the reverse scanning order, to find
the maximum intensity value. Minimum and maximum values
are then subtracted to calculate the histogram width (i.e.,
real_HW). This quantity is then compared with HW and, if it
is greater, the HW_flag signal is asserted. The comparing task
is performed exploiting an 8-bit comparator, and the entire
process is managed by the HWC Controller.
The BW Calculator scans the Histogram Buffer in order to
find the maximum difference between two adjacent HBs. This
quantity is compared with the BW threshold and, if it is greater,
the BW_flag signal is asserted.
In parallel to this task, BW Calculator computes che HB_sum,
that represents the value of the sum of the equalization
transformation function (i.e.,

∑I(x,y)
j=0 HBj in (3)).

In order to perform these tasks, BW Calculator is composed of
a 20-bit subtractor, a 28-bit accumulator, a 20-bit comparator
and a Finite State Machine (i.e., BWC Controller). Finally, the
BWC Controller asserts the HAD signal when the histogram
scanning is completed. The entire histogram analysis process
requires just 256 clock cycles, since the histogram is composed
of 28 HBs (i.e., pixel intensities can range from 0 to 255).

C. Equalizer / Stretcher

The Equalizer / Stretcher module receives in input, from
the Histogram Analyzer, all the signals required to perform the
enhancement of the input image, and it provides the enhanced
pixels, grouped in 32-bit packets. The internal architecture is
shown in Fig. 4.

Figure 4: Histogram Equalizer and Stretcher internal architec-
ture

This module is composed of two HB_sum Buffers, the Equal-
izer and the Stretcher modules.
Initially, the HAD signal is 0, thus, the HB_sum values
provided by the previous module are stored both in HB_sum
Buffer 1 and in HB_sum Buffer 2, that are implemented as
dual-port BRAMs.
When the HAD signal is asserted, a new image can be received
and enhanced. The equalization and stretching of the input
pixels are done in parallel by the Equalizer and the Stretcher.
Equalizer applies the transformation function shown in (3) on
each input. The 4 input pixels address the 4 ports provided by
the two buffers in order to read out the associated sum value
(i.e.,

∑I(x,y)
j=0 HBj in (3)). The 4 values are then multiplied

by the k constant (see (3)). The k constant is represented using
the 0.15 fixed-point format, this ensures a very high precision
(see Section IV). For the sake of completeness, in the proposed



architecture, the binary value of k is set to:

k =
2bpp − 1

1024 ∗ 1024 = .000000000001000(b) (6)

This choice enables to implement the multiplications as shift-
ing operations, providing low resources usage. The result of
the multiplication is truncated in order to extract its integer
part, that represents the value of the equalized pixel.
Stretcher performs the operation shown in (1). First, it com-
putes the subtraction between the received pixel values and
the min_HB signal. In parallel, the C factor is computed by
mean of a 23-bit division between 2bpp − 1 (i.e., R in Fig. 4)
and real_HW signal. 23 bits are required in order to represent
the output of this division in the 8.15 fixed-point format.
Finally, the results of the subtractions and the C factor are
multiplied exploiting 4 23-bit multipliers. The result of each
multiplication is truncated in order to extract the integer part
that represents the value of the stretched pixel.
The output of the Equalizer / Stretcher module is selected
between the outputs of the Equalizer or the Stretcher using a
multiplexer. The select signal of this multiplexer is driven by
the logic-and operator between HW_flag and BW_flag. In this
way, the stretched pixels are output if HW_flag and BW_flag
are asserted (i.e., the image histogram is narrow and very
peaked), otherwise equalized pixels are provided in output.
The Equalizer / Stretcher, for enhancing the input image,
requires the number of clock cycles needed to receive
1024x1024 pixels, plus 23 additional clock cycles to perform
the C factor computation, because the divider is not a combi-
natorial component. Thus, the overall number of clock cycles
required to enhance an image is equal to:

Nclock =
1024 ∗ 1024

4
+ 23 = 262167 (7)

IV. EXPERIMENTAL RESULTS

The architecture presented in Section III has been described
in VHDL and synthesized on a space qualified Virtex 5
XQR5VFX130 FPGA device, using Xilinx ISE Design Suite
14.3. The selected FPGA provides exceptional hardness to
single-event upsets, total immunity to single-event latch-ups,
total ionizing doses, and datapath protection from single-event
transients, making it completely suitable for space applica-
tions.
Table I lists the area occupation on the target device, high-
lighting the resources usage of every SAFE building block.

Table I: Resource Usage for Xilinx Virtex 5 XQR5VFX130

Module FPGA Area Occupation Max Freq.
LUTs DSP BRAMs [MHz]

HC 248 (0.19%) - (-) 5 (0.84%) 253.3
HA 181 (0.14%) - (-) 2 (0.34%) 172.4
E/S 250 (0.19%) 8 (2.5%) - (-) 177.1

Total 679 (0.52%) 8 (2.5%) 7 (1.18%)

The maximum input frame rate that can be sustained by SAFE

(a) Original (b) Histogram

(c) Stretched (d) Equalized

Figure 5: Test of frame enhancement (best results by HS)

is related to the number of clock cycles needed to analyze and
enhance the input images. The time slot required between the
acquisition of two consecutive frames is equal to the time
required to compute the input image histogram, to analyze it,
and to calculate the scale factor C for the image stretching.
Since the maximum operating frequency is equal to 172.4
MHz, the time required to accomplish these tasks is:

Texec =
NCLK_HC +NCLK_HA +NCLK_DIV

fMAX
=

=
262400 + 256 + 23

172.4 MHz
= 1.524 ms (8)

This execution time led to a maximum frame rate of 656
frame-per-second (fps).
This result clearly shows that, in an images processing chain,
the image enhancement far exceeds the typical frame rate of
25 fps of the other building blocks, and of the camera, as well.
Simulations of the hardware have been done using Modelsim
SE 10.0c. Simulation results have been validated comparing
them with the values obtained by a MATLAB model of the
described architecture. The validation involved a set of 50
different images of several planetary environment provided by
Thales Alenia Space company.
Fig. 5 and Fig. 6 show examples of frames enhanced by the
two available algorithms. In Fig. 5 the best result is achieved
by applying the HS, while in Fig. 6 the HE should be preferred.
Starting from the original frame shown in Fig. 5a, the relative
histogram is computed. As shown in Fig. 5b, in this case
the histogram is narrow and extremely peaked. Thus, a HS
approach should be preferred, since it outputs an image with
high contrast (see Fig. 5c), with respect to the equalized one
(see Fig. 5d).
By analyzing the original frame shown in Fig. 6a and the as-
sociated histogram (Fig. 6b), one can notice that the histogram



(a) Original (b) Histogram

(c) Stretched (d) Equalized

Figure 6: Test of frame enhancement (best results by HE)

is smoothed and relatively wide. Thus, the HE will give better
results in term of image contrast, as can be inferred by visually
comparing Fig. 6d and Fig. 6c.
After tuning HW and BW thresholds, the validation campaign
has demonstrated that SAFE is always able to select the best
IET to be applied on the input frames. Moreover, it has also
proven that the frame enhancement achieved by the proposed
architecture is completely satisfying. In fact, the statistics (i.e.,
image histograms) of two consecutive images are quite closed,
even if they are taken by the camera at 1 fps. Comparisons
have been done between frames enhanced with SAFE (i.e.,
exploiting the information associated to the previous frame),
and frames enhanced with a standard approach (i.e., exploiting
the information of the associated histogram). This comparison
showed that SAFE introduces just a maximum error of 0,39%
on the intensity of the pixels, w.r.t. the standard approach.

V. CONCLUSION

This paper presented SAFE: an innovative FPGA-based IP-
CORE for real-time applications. Thanks to its self adaptivity,
SAFE is able to enhance the frames captured by a camera with-
out storing internally the whole image. Moreover, depending
on the properties of the image, it automatically chooses the
best enhancement operation to be applied.
The experimental results show how the different algorithms
can heighten the contrast, in order to improve the subsequent
feature extraction and matching task. The very high frame
rate achieved by the IP-core allows its use in hard real-time
application. Furthermore, the area occupation of the whole
design is negligible when compared to the total amount of
resources available in the FPGA device.
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