
MarciaTesta: An Automatic Gen-
erator of Test Programs for Mi-
croprocessors' Data Caches
Authors: Di Carlo S., Gambardella G., Indaco M., Rolfo D., Prinetto P.,

Published in the Proceedings of the IEEE 20th Asian Test Symposium (ATS), 20-23 Nov. 2011, New 

Delhi, IN.

N.B. This is a copy of the ACCEPTED version of the manuscript. The final 
PUBLISHED manuscript is available on IEEE Xplore®:

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6114763

DOI: 10.1109/ATS.2011.78

© 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be 

obtained for all other uses, in any current or future media, including reprinting/republishing 

this material for advertising or promotional purposes, creating new collective works, for resale 

or redistribution to servers or lists, or reuse of any copyrighted component of this work in 

other works.

!Politecnico di Torino

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6114763
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6114763
http://dx.doi.org/10.1109/ATS.2011.78
http://dx.doi.org/10.1109/ATS.2011.78


mechanisms. The paper is organized as follows: Section II
describes the SBST methodology to adapt march test for cache
memories. Section III describes the MarciaTesta tool, explor-
ing its main features, input/outputs, and internal architecture.
Section IV shows experimental results gathered targeting the
Xilinx Microblaze and the Altera Nios II microprocessors,
respectively. Section V concludes the paper.

II. SBST METHODOLOGY

This section shortly overviews the SBST methodology pro-
posed in [11] and exploited in this paper.

Traditional March tests must be properly translated before
they can be applied to a cache memory. The overall translation
process aims at defining basic cache march test operations that
take into account the peculiar way in which cache memory
cells can be accessed. The following basic operation are
defined:

• w(αt, DB): represents a write operation of a cache
line. DB is the data background pattern (for each DB
a complemented DB must be defined) written in the data
array section of the cache. α identifies the set in which
the line must be written and t identifies the tag written
in the directory array of cache.

• r(αt, DB): represents a Read & Verify operation. The
cache line placed in the set α and identified by the tag t
is read and compared with the expected DB.

• r(αt): similar to the Read & Verify operation but the read
value is not verified.

We will not discuss the complex addressing order translations
presented in [11] since, in its current implementation, our gen-
eration tools deals with direct-mapped data cache memories
whose cache lines are directly addressable.

According to the internal cache organization, the test ap-
proaches for data and directory array are different. In data
array testing, DB patterns are crucial while actual tag values
are not relevant. In this context, tags are used to correctly
address the cache and the only requirement is the number
of different tags. For directory array, tags became the actual
test patterns. In addition, read and write operations can only
be performed in an indirect way exploiting the data array.
Taking into account these issues, the read verification can only
be performed by detecting cache-miss events. This in turns
requires creating an inconsistency between the content of the
cache and that of the main memory, using different approaches
based on the adopted write policy. The write-through policy
requires to disable the cache in order to write a different value
in the main memory, while for write-back cache policy the
following rules are enough to create the miss condition:

• any write operation must be followed by another one with
complemented DB;

• each Read & Verify operation must contain the value of
the expected DB stored in the cache memory;

• an initialization march element must be added.

III. MARCIATESTA TOOL

MarciaTesta tool is a general purpose tool able to generate
the assembler algorithm (ASM) that implements a chosen
March Test for a target processor data cache.
In the sequel, we focus first on a tool overview, then we present
its basic principles of operations. The section concludes with
a detailed analysis of the tool’s internal architecture.

Fig. 1. MarciaTesta tool.

A. Input Data

The tool gets the following input data (Fig. 1):

(i) Target memory configuration

It is the input file that describes the architecture of the target
data cache, according to the following parameters:

• Write policy: the write policy of the cache (Write Through

or Write Back.
• Word size: the data-width of the target system.
• #Offset (O): The number of less significant bits of the

memory address (O) that identify a specific word into
the cache line (Fig. 2):

O = !log2(nW )"

where nW identifies the number of words per cache line.
• #Index (I): the set of bits of the memory address that

identifies the cache line where the desired information
can be stored (Fig. 2):

I = !log2(nC)"

where nC identifies the number of cache lines.
• #Tag (T): the number of most significant bits of the

memory address that identify the content of the directory
array used to tag the cached information (see Fig. 2):

T = N − I −O

where N is the memory address-width.
Resorting to the values of the above presented parame-
ters, one can easily calculate the memory’s and cache’s
dimensions:

Cache Dim = 2I+O



Mem Dim = 2T+I+O

• Base address (BA): the address serving as a reference
point (”base”) for other addresses in data array testing.
An important condition on this parameter is:

BA+ 2 ∗ (T + I +O) ∈ {CacheableMemory}

(ii) March Test description

It includes:

• The desired March Test to be implemented
• The Addressing Order (AO), i.e., the exact sequence

in which the cache lines must be addressed during the
ascending (’U’) and descending (’D’) addressing orders.
Such a facility is of primary importance to define custom
addressing sequences required to detect dynamic memory
faults [7].

• The Data Background (DB) List, i.e., the set of back-
ground patterns required for the implementation of the
data and directory array test.

(iii) Target processor ISA description

It is a library that contains the minimum set of supported
target microprocessors instructions, grouped in Meta-ISAs
[16], useful to synthesize march test, suitable for data cache
memories, in assembly code.

Fig. 2. Memory address logical division.

B. Output Data

The tool generates the following output data:

• Target test program (C)

It is an optional output useful for test engineer for emu-
lating test execution. It represents the C/C++ intermediate
implementation of the March Test generated according to
the SBST methodology.

• Target test program (ASM)

It is the generated assembly code for testing the data
cache.

C. Internal architecture

The assembly test program generation relies on two main
translation steps (Fig. 3). The former one, implemented by the
YAUF2C module, transforms the input March Test into a suit-
able test for data cache, exploiting a given SBST methodology.
In the generated output, the test is expressed in terms of a set
of C-based macros.

The latter step translates such a C program into the right
assembly instructions of the target microprocessor.

In the sequel we briefly outline the main features of the two
translation steps.

Fig. 3. Flow diagram of the tool.

YAUF2C
The YAUF2C module is a C program that translates the input
march test (MT) into an intermediate behavioral implemen-
tation, resorting to the set of macro-operation summarized in
Table I).

TABLE I
C-like MT MACRO-OPERATION

Name Meaning

Write memory cell(word, address) Write in memory the word at address

Read memory cell(address)
Write the cache line corresponding

to address

Read and verify for Data(address)
Read the data corresponding to address

from cache and verify the correctness of it

Read and verify for Directory
Read the data corresponding to

(DB TAG,DB OK)
DB TAG+addressing order from cache

and verify the equality with DB OK

Invalidate cache line(index)
Invalidate the cache line corresponding

to index

Enable cache Enable read and write from the cache

Disable cache Disable read and write from the cache

To better understand the translation process implemented
by YAUF2C, in the sequel we provide three examples of



March Test translation targeting the data and directory arrays
of no write-allocate caches, considering both write-through
and write-back policies.
The cache write operation is implemented by means of a
read operation that fills a given cache line assuming that
the cache is initially empty. To guarantee this condition,
all cache lines must be initially invalidated. Table II shows
the translation of a test for the data array. The Init Memory

operation is required to initialize the memory with the correct
DB patterns. The other two operations show how to translate
Write and Read operations, respectively. The second one
is an upward w0, implemented by a sequence of invalidate
operations on each cache line, followed by read memory
statements at the addresses corresponding to the ascending
sequence defined by the addressing order content.
The third operation is a downward r1 implemented by a
sequence of Read & Verify operations at the addresses
corresponding to the descending sequence defined by the
addressing order content.

TABLE II
TRANSLATION EXAMPLE FOR DATA ARRAY TEST

MT Target test program C

Init Memory ⇒

for(i=0;i<pow(2,I+O);i++)

Write memory cell(DB, BaseAddress+i)

for(i=pow(2,I+O);i<pow(2,I+O+1);i++)

Write memory cell(DB, BaseAddress+i)

U(w0) ⇒

for(i=0;i<pow(2,I);i++)

Invalidate cache line(i)

for(i=0;i<pow(2,I);i++)

Read memory cell

(BaseAddress+pow(2,I+O)+Addressing Order[i])

D(r1) ⇒

for(i=pow(2,I)-1;i>=0;i- -)

Read and verify for Data

(BaseAddress+Addressing Order[i])

Table III and IV show a translation example of the
directory array test for write-through and write-back policies,
respectively.
The first row writes the data background pattern at the
addresses that have the T MSB equals to the desired
DB TAG, in order to achieve the goal to write the correct
DB in the directory array when we will read at that address,
knowing the corresponding pattern in the data array. In this
example, the only difference between the two types of cache
is in the mismatch creation between cache and memory
during write operations [11]. In the write-back cache such a
difference is created using DB zero and DB one, while in
the write-through cache it is created using Enable Cache and
Disable Cache.

The second row presents the steps required to write in the
array the desired data and to be able to read it indirectly.
The first step invalidates each line of the cache, avoiding
undesired cache hit during the write operation. Then the
test, in the write-through case (Table III), reads the cache

at the correct address (DB TAG one), that corresponds to a
DB TAG write in directory array [11]. After the data cache
disabling, the algorithm writes, at the same address in memory,
the complemented DB for the data array, creating a cache
incoherence; the data cache is then enabled again. A Read &
Verify operation in directory array can thus be implemented
as a read from data cache, verifying that the read data equals
the one written when the cache was enabled. If the read data
is the second one (written when the cache was disabled), an
error occurred on the directory array.
In the write-back case (Table IV), the cache incoherence is
obtained by writing in the data array the complemented value
of the previous written one, thus avoiding to use the disable
and enable cache operations [11]. Resorting to this kind of
write operation, the Read & Verify operation for the directory
array can be implemented by a read from the data array,
verifying that the data it is equal to the last written, DB one
for r1 and DB zero for a r0. If the read data is equal to
DB one or DB zero, an error occurred in the directory
array.

TABLE III
TRANSLATION EXAMPLE DIRECTORY ARRAY TEST OF A WRITE-THROUGH

CACHE

MT Target test program C

Init Memory ⇒

for(i=0;i<pow(2,I+O);i++)

Write memory cell(DB, DB TAG+i)

for(i=pow(2,I+O);i<pow(2,I+O+1);i++)

Write memory cell(DB, DB TAG+i)

U(w0) ⇒

for(i=0;i<pow(2,I);i++)

Invalidate cache line(i)

for(i=0;i<pow(2,I);i++)

Read memory cell

(DB TAG+Addressing Order[i])

Disable Cache

for(i=pow(2,I+O);i<pow(2,I+O+1);i++)

Write memory cell(DB, DB TAG+i)

Enable Cache

D(r1) ⇒

for(i=pow(2,I)-1;i>=0;i- -)

Read and verify for Directory

(DB TAG,DB)

C2ASM
The second main module of MarciaTesta (Fig. 3) translates the
C-like March Test generated by the previous module into an
equivalent assembly program exploiting the ISA of the target
processor. In order to write a correct ASM software, the tool
exploits the description of the ISA contained in the Processor

ISA Library and translates the macro-operations of the C-like

MT (with related parameters) into a sequence of machine-level
instructions.

The Processor ISA Library contains a selection of instruc-
tions for the implementation of the macro-operations listed in
Table I. It is very important to notice that the for statements



TABLE IV
TRANSLATION EXAMPLE DIRECTORY ARRAY TEST OF A WRITE-BACK

CACHE

MT Target test program C

Init Memory ⇒

DB zero = DB

DB one = DB

for(i=0;i<pow(2,I+O);i++)

Write memory cell(DB one, DB TAG+i)

for(i=pow(2,I+O);i<pow(2,I+O+1);i++)

Write memory cell(DB zero, DB TAG+i)

U(w0) ⇒

for(i=0;i<pow(2,I);i++)

Invalidate cache line(i)

DB zero = DB zero

for(i=pow(2,I+O);i<pow(2,I+O+1);i++)

Write memory cell(DB zero, DB TAG+i)

for(i=0;i<pow(2,I);i++)

Read memory cell

(DB TAG+Addressing Order[i])

D(r1) ⇒

for(i=pow(2,I)-1;i>=0;i- -)

Read and verify for Directory

(DB TAG,DB one)

implemented in C-like MT are unrolled in the assembler
program, in order to have a faster test and to avoid problems
due to the presence of branch-prediction strategies in the
processor.

Table V and VI show a translation example of two macro-
operations for the Nios II and MicroBlaze ASM, respectively.
These tables display the first translation step, from macro-
operation to Meta-ISAs [16], and the second one from Meta-
ISAs to ASM, obtained applying the Target processor ISA

description of the target processor.

TABLE V
TRANSLATION EXAMPLE OF MACRO-OPERATION FOR MICROBLAZE ASM

Target test program C Meta-ISA ASM

Write memory cell
⇒

Register32write ⇒
imm <DB[31:16]>

(DB, DB TAG+i)

ori <r DB>,<r0>,<DB[15:0]>

MemoryWrite ⇒ sw <r addr>,<r0>,<r DB>

Read and verify for Data
⇒

MemoryRead ⇒ lw <r read>,<r0>,<r addr>

(BA+AO[i])
Verify Cache ⇒

cmpu <r read>,<r read>,<r DB>

bneqi <r read>,<ERROR>

TABLE VI
TRANSLATION EXAMPLE OF MACRO-OPERATION FOR NIOSII ASM

Target test program C Meta-ISA ASM

Write memory cell
⇒

Register32write ⇒
movhi <r DB>,%hi(<DB>)

(DB, DB TAG+i)

ori <r DB>,<r DB>,%lo(<DB>)

MemoryWrite ⇒ stw <r addr>,<0>(<r DB>)

Read and verify for Data
⇒

MemoryRead ⇒ ldw <r read>,<0>(<r addr>)

(BA+AO[i])
Verify Cache ⇒ bne <r read>,<r DB>,<ERROR>

IV. EXPERIMENTAL RESULTS

The MarciaTesta tool has been used to generate the test
for the data cache memories of two different microprocessors:
Microblaze [17] and Nios II [18].
Microblaze is a soft core processor designed for Xilinx FPGAs,
with a Harvard memory architecture, a RISC-like instruction
set and a data cache with write-through policy. Nios II is
a 32-bit RISC embedded-processor designed for the Altera

FPGAs with a data cache with write-back policy. The actual
boards on which we deployed the automatically generated tests
are a Virtex4 ML-403 Embedded Platform [19] and a Nios

Development Board Cyclone II Edition [20], respectively.
Both processors have been implemented with 2kB instruction
and data cache with four words per cache line, 128kB of on-
chip memory. This means that T = 6, I = 9 and O = 2 (see
Fig. 2).
Table VII shows some data related to the automatic generation
of the assembly programs to implement 11 different March
Tests. For each test, the table lists the number of assembly

TABLE VII
EXPERIMENTAL RESULTS ON NIOS II AND MICROBLAZE PROCESSORS

March test Test Length(Xn)
Number of ASM rows

NiosII MicroBlaze

MATS+ [21] 5n 50,289 42,079

March C- [22] 10n 99,453 87,147

March U [23] 13n 128,121 111,719

PMOVI [24] 13n 130,169 117,863

March LR [25] 14n 138,365 121,963

March SR [26] 14n 140,413 128,107

March B [27] 17n 164,985 140,391

March MSS [28] 18n 177,277 156,779

March SS [29] 22n 218,237 197,739

March G [30] 23n 226,433 201,839

Abraham, Thatte [31] 30n 296,109 267,419

instructions of the test program generated by MarciaTesta for
both the data and the directory array test.
One can notice that there is no correlation between the
complexity of the original march test and the number of
instructions of the test program. This can be easily understood
by focusing on the write and read operations. While these are
usually considered as atomic in ”traditional” March test, i.e.,
in March tests for ”normal” memories, when targeting cache
memories they must be implemented resorting to a sequence
of instructions.
In addiction, the MicroBlaze test requires less assembly in-
structions than the Nios II. This is due to the reduced number
of operations required to create the cache incoherence during
the write operation in the directory array test of the write-
through cache.

V. CONCLUSION

In this paper we presented MarciaTesta, an EDA tool for the
automatic generation of assembly cache test program. Starting



from a formal definition of March Test, MarciaTesta generates
assembly test code for the target processor.
The cross-architecture feature of the tool, i.e., its capability of
generating assembly code for several architectures, relies on
the availability of a set of libraries describing the ISA of the
target processors.
The correctness of the tool has been proved by a novel
validation and verification approach based on the generation
of log files at three different abstraction levels, and namely
at the March Test level, at the C implementation level and,
eventually at the machine Instruction level. The correctness of
the generated code has been checked on several target archi-
tectures and in the implementation of several test algorithms
on each of them.
Next releases of MarciaTesta will support from the one hand
set-associative cache memories and, from the other hand,
instruction caches.

ACKNOWLEDGMENT

The authors would like to express their sincere thanks to
the whole design team of Ansaldo STS SpA for their helpful
hints and guidelines.

REFERENCES

[1] G. E. Moore, “Cramming more components onto integrated circuits,”
Proc. IEEE, vol. 86, no. 1, pp. 82–85, 1998.

[2] E. J. Marinissen, B. Prince, D. Keltel-Schulz, and Y. Zorian, “Challenges
in embedded memory design and test,” in Proc. Design, Automation and
Test in Europe, pp. 722–727, 2005.

[3] “International technology roadmap for semiconductors.” http://www.itrs.
net, 2010.

[4] S. Kornachuk, L. McNaughton, R. Gibbins, and B. Nadeau-Dostie, “A
high speed embedded cache design with non-intrusive bist,” in Proc.
Records of the IEEE International Memory Technology, Design and
Testing Workshop, pp. 40–45, 1994.

[5] J. Bralich and J. Fleischman, “Design of cache test hardware on the hp
pa8500,” IEEE Design & Test of Computers, vol. 15, no. 3, pp. 58–63,
1998.

[6] N. Kranitis, A. Paschalis, D. Gizopoulos, and G. Xenoulis, “Software-
based self-testing of embedded processors,” IEEE Trans. Comput.,
vol. 54, no. 4, pp. 461–475, 2005.

[7] S. Di Carlo and P. Prinetto, Models in Hardware Testing, ch. Models in
Memory Testing. Springer, 2010.

[8] Y.-C. Lin, Y.-Y. Tsai, K.-J. Lee, C.-W. Yen, and C.-H. Chen, “A
software-based test methodology for direct-mapped data cache,” in Proc.
17th Asian Test Symposium (ATS), pp. 363–368, 2008.

[9] J. Sosnowski, “In-system testing of cache memories,” in Proc. IEEE
International Test Conference (ITC), pp. 384–393, 1995.

[10] S. Alpe, S. Di Carlo, P. Prinetto, and A. Savino, “Applying march tests
to k-way set-associative cache memories,” in Proc. 13th European Test
Symposium (ETS), pp. 77–83, 2008.

[11] S. Di Carlo, P. Prinetto, and A. Savino, “Software-based self-test of
set-associative cache memories,” IEEE Trans. Comput., vol. 60, no. 7,
pp. 1030–1044, 2011.

[12] G. Theodorou, N. Kranitis, A. Paschalis, and D. Gizopoulos, “A
software-based self-test methodology for in-system testing of processor
cache tag arrays,” in Proc. IEEE 16th International On-Line Testing
Symposium (IOLTS), pp. 159–164, 2010.

[13] S. M. Al-Harbi and S. K. Gupta, “A methodology for transforming
memory tests for in-system testing of direct mapped cache tags,” in
Proc. 16th IEEE VLSI Test Symposium (VTS), pp. 394–400, 1998.

[14] W. J. Perez H, J. V. Medina, D. Ravotto, E. Sanchez, and M. S. Reorda,
“Software-based self-test strategy for data cache memories embedded
in socs,” in Proc. 11th IEEE Workshop Design and Diagnostics of
Electronic Circuits and Systems (DDECS), pp. 1–6, 2008.

[15] J. Sosnowski, “Improving software based self - testing for cache
memories,” in Proc. 2nd International Design and Test Workshop (IDT),
pp. 49–54, 2007.

[16] S. D. Carlo, G. Gambardella, M. Indaco, P. Prinetto, and D. Rolfo, “A
unifying formalism to support automated synthesis of sbsts for embed-
ded caches,” in Proc. of the 9th East-West Design & Test Symposium,
pp. 39–42, 2011.

[17] Xilinx, MicroBlaze Processor Reference Guide, 2004.
[18] Altera, Nios II Processor Reference Handbook, v7.2 ed., 2007.
[19] Xilinx, ML403 Evaluation Platform, v2.5 ed., 2006.
[20] Altera, Nios Development Board Cyclone II Edition Reference Manual,

v1.3 ed., 2007.
[21] I. Mrozek and V. N. Yarmolik, “Mats+ transparent memory test for

pattern sensitive fault detection,” in 15th International Conference on
Mixed Design of Integrated Circuits and Systems, (MIXDES), pp. 493–
498, 2008.

[22] M. Marinescu, “Simple and efficient algorithms for functional ram
testing,” in Proc. of International Test Conference (ITC), pp. 236–239,
1982.

[23] A. J. van de Goor and G. G.N., “March u: a test for unlinked memory
faults,” in Proc. of IEEE Circuits, Devices and Systems, pp. 155–160,
1997.

[24] J. H. D. Jonge and A. J. Smeulders, “Moving inversions test pattern is
thorough, yet speedy,” 1976.

[25] A. van de Goor, G. Gaydadjiev, V. Mikitjuk, and V. Yarmolik, “March lr:
a test for realistic linked faults,” in Proc. of 14th VLSI Test Symposium
(VTS), pp. 272–280, 1996.

[26] S. Hamdioui and A. Van De Goor, “An experimental analysis of spot
de fects in srams: realistic fault models and tests,” in Proc. of the 9th
Asian Test Symposium (ATS), pp. 131–138, 2000.

[27] A. Van De Goor, “Using march tests to test srams,” Design Test of
Computers, IEEE, vol. 10, no. 1, pp. 8–14, 1993.

[28] G. Harutunvan, V. Vardanian, and Y. Zorian, “Minimal march tests for
unlinked static faults in random access memories,” in Proc. of 23rd VLSI
Test Symposium (VTS), pp. 53–59, 2005.

[29] S. Hamdioui, A. J. van de Goor, and M. Rodgers, “March ss: A test for
all static simple ram faults,” in Proc. of the 2002 IEEE International
Workshop on Memory Technology, Design and Testing, pp. 95–100,
2002.

[30] D. Suk and S. Reddy, “A march test for functional faults in semiconduc-
tor random access memories,” IEEE Trans. Comput., vol. C-30, no. 12,
pp. 982–985, 1981.

[31] R. Nair, S. Thatte, and J. Abraham, “Efficient algorithms for testing
semiconductor random-access memories,” IEEE Trans. Comput., vol. C-
27, no. 6, pp. 572–576, 1978.


