550 research outputs found

    On the description of two-particle transfer in superfluid systems

    Full text link
    Exact results of pair transfer probabilities for the Richardson model with equidistant or random level spacing are presented. The results are then compared either to particle-particle random phase approximation (ppRPA) in the normal phase or quasi-particle random phase approximation (QRPA) in the superfluid phase. We show that both ppRPA and QRPA are globally well reproducing the exact case although some differences are seen in the superfluid case. In particular the QRPA overestimates the pair transfer probabilities to excited states in the vicinity of the normal-superfluid phase transition, which might explain the difficult in detecting collective pairing phenomena as for example the Giant Pairing Vibration. The shortcoming of QRPA can be traced back to the breaking of particle number that is used to incorporate pairing. A method, based on direct diagonalization of the Hamiltonian in the space of two quasi-particle projected onto good particle number is shown to improve the description of pair transfer probabilities in superfluid systems.Comment: 9 pages, 7 figure

    Proton-neutron pairing in N=Z nuclei: quartetting versus pair condensation

    Get PDF
    The isoscalar proton-neutron pairing and isovector pairing, including both isovector proton-neutron pairing and like-particle pairing, are treated in a formalism which conserves exactly the particle number and the isospin. The formalism is designed for self-conjugate (N=Z) systems of nucleons moving in axially deformed mean fields and interacting through the most general isovector and isoscalar pairing interactions. The ground state of these systems is described by a superposition of two types of condensates, i.e., condensates of isovector quartets, built by two isovector pairs coupled to the total isospin T=0, and condensates of isoscalar proton-neutron pairs. The comparison with the exact solutions of realistic isovector-isoscalar pairing Hamiltonians shows that this ansatz for the ground state is able to describe with high precision the pairing correlation energies. It is also shown that, at variance with the majority of Hartree-Fock-Bogoliubov calculations, in the present formalism the isovector and isoscalar pairing correlations coexist for any pairing interactions. The competition between the isovector and isoscalar proton-neutron pairing correlations is studied for N=Z nuclei with the valence nucleons moving in the sdsd and pfpf shells and in the major shell above 100^{100}Sn. We find that in these nuclei the isovector pairing prevail over the isoscalar pairing, especially for heavier nuclei. However, the isoscalar proton-neutron correlations are significant in all nuclei and they always coexist with the isovector pairing correlations.Comment: 12 pages, 1 figur

    Quantal corrections to mean-field dynamics including pairing

    Full text link
    Extending the stochastic mean-field model by including pairing, an approach is proposed for describing evolutions of complex many-body systems in terms of an ensemble of Time-Dependent Hartree-Fock Bogoliubov trajectories which is determined by incorporating fluctuations in the initial state. Non-linear evolution of the initial fluctuations provides an approximate description of quantal correlations and fluctuations of collective observables. Since the initial-state fluctuations break the particle-number symmetry, the dynamical description in which pairing correlations play a crucial role is greatly improved as compare to the mean-field evolution. The approach is illustrated for a system of particles governed by a pairing Hamiltonian.Comment: 5 pages, 2 figures, To appear in Phys. Rev. C (Rapid communication

    Subtraction method in the second random--phase approximation: first applications with a Skyrme energy functional

    Get PDF
    We make use of a subtraction procedure, introduced to overcome double--counting problems in beyond--mean--field theories, in the second random--phase--approximation (SRPA) for the first time. This procedure guarantees the stability of SRPA (so that all excitation energies are real). We show that the method fits perfectly into nuclear density--functional theory. We illustrate applications to the monopole and quadrupole response and to low--lying 0+0^+ and 2+2^+ states in the nucleus 16^{16}O. We show that the subtraction procedure leads to: (i) results that are weakly cutoff dependent; (ii) a considerable reduction of the SRPA downwards shift with respect to the random--phase approximation (RPA) spectra (systematically found in all previous applications). This implementation of the SRPA model will allow a reliable analysis of the effects of 2 particle--2 hole configurations (2p2h2p2h) on the excitation spectra of medium--mass and heavy nuclei.Comment: 1 tex, 16 figure

    Pairing and specific heat in hot nuclei

    Full text link
    The thermodynamics of pairing phase-transition in nuclei is studied in the canonical ensemble and treating the pairing correlations in a finite-temperature variation after projection BCS approach (FT-VAP). Due to the restoration of particle number conservation, the pairing gap and the specific heat calculated in the FT-VAP approach vary smoothly with the temperature, indicating a gradual transition from the superfluid to the normal phase, as expected in finite systems. We have checked that the predictions of the FT-VAP approach are very accurate when compared to the results obtained by an exact diagonalization of the pairing Hamiltonian. The influence of pairing correlations on specific heat is analysed for the isotopes 161,162^{161,162}Dy and 171,172^{171,172}Yb. It is shown that the FT-VAP approach, applied with a level density provided by mean field calculations and supplemented, at high energies, by the level density of the back-shifted Fermi gas model, can approximate reasonably well the main properties of specific heat extracted from experimental data. However, the detailed shape of the calculated specific heat is rather sensitive to the assumption made for the mean field.Comment: 10 pages, 12 figure

    Thermodynamics of small superconductors with fixed particle number

    Full text link
    The Variation After Projection approach is applied for the first time to the pairing hamiltonian to describe the thermodynamics of small systems with fixed particle number. The minimization of the free energy is made by a direct diagonalization of the entropy. The Variation After Projection applied at finite temperature provides a perfect reproduction of the exact canonical properties of odd or even systems from very low to high temperature.Comment: 4 pages, 3 figure

    Opening the Gate to the Serism Project: From Earth to Space and Back

    Get PDF
    In the context of Space Medicine, the aim of “SERiSM” (Role of the Endocannabinoid System in Reprogramming human pluripotent Stem cells under Microgravity) project, selected by the Italian Space Agency, was to study the involvement of the endocannabinoid system (ECS) in the osteogenic differentiation under real microgravity. An innovative and easily accessible stem cell model derived from human blood (human blood-derived stem cells, hBDSCs) was used to this purpose. This model is autologous and possesses a remarkable proliferative and differentiative capacity underground gravity conditions, with high therapeutic potential for bone degenerative diseases. ECS is a fine network of proteins that interact to regulate the endogenous levels of lipid mediators, collectively termed endocannabinoids (eCBs), which in turn are involved in cell communication and in the mechanisms governing the switch between cell life and death. In the frame of the VITA mission, led by European Space Agency (ESA) astronaut Paolo Nespoli, we analyzed the differentiation process also under microgravity condition and evaluated the expression of ECS proteins through immunoassay methods. Our results demonstrate that some elements of the ECS are modulated during the differentiation process and in microgravity, supporting the idea that increased levels of anandamide are indeed need to stimulate type-1 cannabinoid receptor. In conclusion, microgravity could drive endocannabinoid signalling in the former stages of hBDSCs differentiation
    corecore