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The isoscalar proton–neutron pairing and isovector pairing, including both isovector proton–neutron 
pairing and like-particle pairing, are treated in a formalism which conserves exactly the particle number 
and the isospin. The formalism is designed for self-conjugate (N = Z ) systems of nucleons moving 
in axially deformed mean fields and interacting through the most general isovector and isoscalar 
pairing interactions. The ground state of these systems is described by a superposition of two types 
of condensates, i.e., condensates of isovector quartets, built by two isovector pairs coupled to the 
total isospin T = 0, and condensates of isoscalar proton–neutron pairs. The comparison with the exact 
solutions of realistic isovector–isoscalar pairing Hamiltonians shows that this ansatz for the ground state 
is able to describe with high precision the pairing correlation energies. It is also shown that, at variance 
with the majority of Hartree–Fock–Bogoliubov calculations, in the present formalism the isovector and 
isoscalar pairing correlations coexist for any pairing interactions. The competition between the isovector 
and isoscalar proton–neutron pairing correlations is studied for N = Z nuclei with the valence nucleons 
moving in the sd and pf shells and in the major shell above 100Sn. We find that in these nuclei the 
isovector pairing prevail over the isoscalar pairing, especially for heavier nuclei.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Many nuclei develop correlations among the valence nucle-
ons which can be treated approximatively as a BCS condensate 
of Cooper pairs [1]. This approximation works reasonably well for 
heavy nuclei with neutrons and protons moving in different ma-
jor shells, in which the like-particle pairing plays the dominant 
role. However, in spite of many years of studies, it is not clear 
yet which are the physically relevant correlations induced by the 
pairing interactions in nuclei with N ≈ Z . In particular, the most 
debated issues are: (i) whether in N = Z nuclei the pairing can 
generate a condensate of isoscalar proton–neutron pairs; (ii) if 
this pairing phase would coexist with the condensate of isovec-
tor proton–neutron pairs and like-particle pairs; (iii) what could be 
the fingerprints of a condensate of isoscalar proton–neutron pairs 
in the experimental data (for a recent overview on proton–neutron 
pairing in nuclei see [2]). From theoretical point of view the first 
two issues have been studied mainly in the framework of Hartree–
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Fock–Bogoliubov (HFB) approach, which has the advantage of pro-
viding an unitary treatment of like-particle and proton–neutron 
pairing, both isovector and isoscalar (e.g., see [3,4] and the refer-
ences quoted therein). These studies show that: (a) in most of the 
cases the isovector and isoscalar proton–neutron pairing correla-
tions do not coexist; (b) the type of pairing which prevails depends 
strongly on the relative strength of isovector and isoscalar pairing 
forces.

In the HFB calculations the particle number and the isospin are 
not conserved exactly, a drawback which could affect significantly 
the competition between T = 0 and T = 1 proton–neutron pair-
ing (e.g., see [5]). Exactly solvable models in which the particle 
number and the isospin are conserved [6–10] show that in fact 
the fundamental ansatz of the HFB theory, which assumes that the 
ground state of nuclei can be described by a condensate of Cooper 
pairs, is not appropriate for N = Z systems. Thus, the SO(5) model 
for isovector pairing interaction shows that in the case of degen-
erate levels the ground state of N = Z systems is described by 
a condensate of quartets [6] and not by a condensate of Cooper 
pairs, as assumed by the BCS-type approximations. In Refs. [11] it 
was demonstrated that this is actually the case not only for the 
schematic SO(5) model but also for any realistic isovector pairing 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Hamiltonian. More precisely, it has been shown that: (i) a conden-
sate of collective quartets, built by two isovector pairs coupled to 
total isospin T = 0, describes the pairing correlation energies of 
N = Z nuclei with a very good precision (errors under 1%); (ii) in 
nuclei with N > Z the isovector pairing correlations are accurately 
described by a quartet condensate to which it is appended a pair 
condensate formed by the neutron pairs in excess [12]; (iii) the 
isovector pairing, when treated by the quartet condensation for-
malism, is able to describe reasonably well the Wigner energies in 
N ≈ Z nuclei [13].

In this Letter we extend the quartet formalism of Ref. [11] for 
treating both the isovector and the isoscalar pairing interactions. 
The formalism proposed here is dedicated to those isovector and 
isoscalar pairing interactions which scatter pairs of nucleons in 
time-reversed states of axially-deformed mean fields. These are the 
pairing interactions which are commonly employed in many nu-
clear structure calculations, e.g., the ones related to beta decays 
studies [14].

2. Formalism

The systems investigated here are composed of an equal num-
ber of neutrons and protons which move in a deformed mean 
field with axial symmetry. The nucleons are interacting through 
an isoscalar proton–neutron pairing force and an isovector pairing 
force, the latter including the proton–neutron pairing and like-
particle pairing. The Hamiltonian which describes these systems 
is given by:

Ĥ =
∑

i,τ=±1/2

εiτ Niτ +
∑

i, j

V T =1(i, j)
∑

t=−1,0,1

P+
i,t P j,t

+
∑

i, j

V T =0(i, j)D+
i,0 D j,0, (1)

where εiτ are the single-particle energies associated to the mean 
fields of neutrons (τ = 1/2) and protons (τ = −1/2). In the case 
of axially-deformed mean fields, supposed here, the single-particle 
states are labeled by i = {a, �}, where � is the projection of 
the angular momentum on z-axis and a denotes the other quan-
tum numbers which specify the states. The second term is the 
most general isovector pairing interaction expressed by the non-
collective pair operators P+

i,1 = ν+
i ν+

ī
, P+

i,−1 = π+
i π+

ī
and P+

i,0 =
(ν+

i π+
ī

+ π+
i ν+

ī
)/

√
2. The third term is the isoscalar proton–

neutron pairing interaction and D+
i,0 = (ν+

i π+
ī

− π+
i ν+

ī
)/

√
2 is the 

operator which creates a non-collective isoscalar proton–neutron 
pair. The operators ν+

i and π+
i create, respectively, a neutron and 

a proton in the state i while ī = {a, −�} denotes the time conju-
gate of the state i.

It can be observed that all pairs operators considered above 
are constructed with the nucleons in time-reversed and axially-
deformed states. Therefore the pairs have J z = 0, where J z is 
the projection of the angular momentum on z-axis, but not a 
well-defined J . In fact, the isovector pairs and the isoscalar pairs 
with J z = 0, built with axially deformed states, can be seen as 
a superposition of pairs with J = {0, 2, 4, ..} and, respectively, 
J = {1, 3, 5, ..}. Therefore the Hamiltonian (1) is not physically 
equivalent with the spherically-symmetric pairing Hamiltonians in 
which are taken into account only J = 0 isovector pairs and J = 1
isoscalar proton–neutron pairs. For the latter case a quartet-type 
formalism, different from the one presented below, has been pro-
posed in Ref. [15].

The Hamiltonian (1) has been employed, with various single-
particle energies and pairing interactions, in many studies. In most 
of them the Hamiltonian (1) was treated in HFB approximation in 
which, through a general Bogoliubov transformation, the protons 
and neutrons are mixed together to form generalized quasiparti-
cles. As a consequence, in HFB the particle number and the isospin 
are not conserved. Here we present a different approach in which 
both quantities are conserved exactly from the outset through the 
way in which the trial wave function is constructed.

As in Ref. [11], for describing the isovector pairing correlations 
we use as building blocks collective isovector quartets formed by 
two isovector pairs coupled to the total isospin T = 0, i.e.,

A+ =
∑

i, j

x̄i j[P+
i P+

j ]T =0

=
∑

i j

xi j(P+
i,1 P+

j,−1 + P+
i,−1 P+

j,1 − P+
i,0 P+

j,0). (2)

Supposing that the amplitudes xij are separable in the indices i
and j, the collective quartet operator can be written as

A+ = 2�+
1 �+

−1 − (�+
0 )2, (3)

where �+
t = ∑

i xi P+
i,t denote, for t = 0,1,−1, the collective 

Cooper pair operators for the proton–neutron, neutron–neutron 
and proton–proton pairs.

For treating the isoscalar proton–neutron correlations we use 
the collective isoscalar pairs defined by

�+
0 =

∑

i

yi D+
i,0 =

∑

i

yi(ν
+
i π+

ī
− π+

i ν+
ī

)/
√

2. (4)

With the collective quartet (3) and the collective isoscalar 
proton–neutron pair (4) we construct the following approximation 
for the ground sate of Hamiltonian (1)

|	〉 = (A+ + (�+
0 )2)nq |0〉, (5)

where nq = (N + Z)/4 is the number of quartets one can form 
with the protons and neutrons (N = Z ) participating to the pairing 
correlations.

The ansatz (5) for the ground state is suggested by the exact 
solution of Hamiltonian (1) for a set of degenerate states and for 
pairing forces of equal strength, i.e., g = V T =1(i, j) = V T =0(i, j). 
We have found that in this case the state (5) is the exact ground 
state of the Hamiltonian (1). The exact ground state energy, when 
the single-particle energies are put to zero, is given by

E(nq, ν) = 2gnq(ν − nq + b), (6)

where nq is the number of quartets, ν is the number of double-
degenerate single-particle levels and b = 2. It should be noticed 
that this particular solution is not the one corresponding to the 
isovector–isoscalar pairing Hamiltonian with SU(4) symmetry [6]. 
In the latter case the isoscalar proton–neutron interaction acts in 
three channels {S = 1, Sz = −1, 0, 1} while here we consider only 
the isoscalar proton–neutron pairs in time-reversed states.

It can be seen that the state (5) is a superposition of terms 
formed by a product of quartet condensates and condensates of 
isoscalar pairs. In particular, it contains two terms, one formed by 
a quartet condensate and the other by a condensate of isoscalar 
pairs. They are denoted by:

|iv〉 = (A+)nq |0〉, (7)

|is〉 = (�+
0 )2nq |0〉. (8)

The quartet condensate (7) is the ansatz used in Refs. [11] to 
describe the isovector pairing correlations in the ground state of 
N = Z nuclei. From Eq. (3) one can see that the quartet condensate 
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(7) is in fact a superposition of like-particle and proton–neutron 
pair condensates.

It is worth mentioning that the state (7) is not a boson con-
densate since the quartet (2) is not a boson operator. Following 
Ref. [6], we call the state (7) a quartet condensate in order to 
indicate that it is composed by identical quartets, i.e., quartets 
described by the same wave function. Therefore here quartet con-
densation has a similar meaning to the Cooper pair condensation 
in BCS-like models.

The state (8) is a projected-BCS (PBCS) state, similar to the PBCS 
states employed for treating the like-particle pairing. The states 
(7) and (8) are the exact solutions of the isovector and, respec-
tively, the isoscalar pairing interactions of the Hamiltonian (1) for 
the case of degenerate states. The exact eigenvalues are given by 
Eq. (6) with b = 3/2 for isovector pairing and b = 1/2 for isoscalar 
pairing. It is interesting to observe that Eq. (6) is in all pairing 
channels similar to the exact solution of the seniority model for 
like-particle pairing (e.g., see [16]), the only difference appearing 
in the value of the quantity b.

The state (5) depends on the parameters xi and yi which de-
fine the collectivity of isovector and isoscalar pairs. They are de-
termined variationally from the minimization of the average of 
the Hamiltonian and from the condition of normalization of the 
state (5). To calculate the average of the Hamiltonian on the trial 
state (5), preserving the Pauli principle exactly, is not a trivial task. 
In order to evaluate analytically the average of the Hamiltonian 
and the norm we use the auxiliary states

|n1n2n3m〉 = �
+n1
1 �

+n2−1 �
+n3
0 �+m

0 |0〉 (9)

and the recurrence relations method of Ref. [11]. The details of the 
calculation method, which involves long expressions, are presented 
in Ref. [17].

3. Results and discussions

One of the most important property of the present formal-
ism for isovector–isoscalar pairing is the prediction that all types 
of pairing correlations coexist for any pairing interactions. In 
order to illustrate that, we consider a system formed by four 
proton–neutron pairs moving in 10 equidistant levels and inter-
acting through state-independent isovector and isoscalar interac-
tions with the strengths given, respectively, by g1 = g(1 − x)/2
and g0 = g(1 + x)/2. For the strength g we take the value 0.6 
(in units of the levels spacing) while the parameter x is varied 
between −1 and 1. In Fig. 1 we show how the isovector and 
isoscalar proton–neutron pairing energies are evolving when one 
goes from an isovector pairing force to an isoscalar pairing force. 
The proton–neutron pairing energies are defined as the averages 
E T =1

pn = 〈	|g1
∑

i, j P+
i,0 P j,0|	〉 and E T =0

pn = 〈	|g0
∑

i, j D+
i,0 D j,0|	〉. 

We observe that the predictions of the present formalism, called 
hereafter the pair-quartet condensation model (PQCM), follows 
very closely the exact pairing energies (shown by dashed lines) 
obtained by diagonalization. In order to evidence how evolve the 
two types of pairing correlations with the pairing forces, in Fig. 1
we display the overlaps between the ground state (5) and the two 
terms of it defined by the quartet condensate (7) and the conden-
sate of isoscalar pairs (8). These overlaps show a smooth transition 
from a condensate of quartets to a condensate of pairs, the two 
types of correlations coexisting in the ground state for any ra-
tio between the strengths of the two pairing forces. It is worth 
noticing however that the relation of these overlaps to the amount 
of isovector and isoscalar pairing correlations in the ground state 
is not straightforward because the state (5) contains, besides the 
states (7) and (8), a third component formed by the product of 
Fig. 1. proton–neutron pairing energies provided by the PQCM approach (full lines) 
and by exact diagonalization (dashed lines) together with the overlaps between the 
ground state (5) and the states (7) and (8). The parameter x on horizontal axis 
scales the strength of the interactions in the two pairing channels (see the text). 
The results correspond to 4 proton–neutron pairs moving in 10 equidistant levels 
and the pairing energies are given in units of levels spacing.

the isovector quartet with the two isoscalar pairs. Moreover, one 
should also consider the fact that the two states (7) and (8) are not 
orthogonal to each other (see below). Because of these reasons the 
proton–neutron pairing energies E T =0,1

pn have contributions from 
both the isovector and the isoscalar degrees of freedom. Therefore 
the pairing energies and the so-called “number of pairs”, which are 
proportional to the former in the case of state-independent pair-
ing forces, cannot be used as relevant quantities for disentangling 
the isovector and the isoscalar pairing correlations.

Next we apply the present formalism to analyze the competi-
tion between T = 1 and T = 0 pairing in realistic calculations. As 
an example we consider N = Z nuclei with the valence nucleons 
moving outside the closed cores 16O, 40Ca and 100Sn. The single-
particle states are generated by Skyrme–HF calculations performed 
for axially deformed mean fields. In the Skyrme–HF calculations, 
done with the code ev8 [18], we use the force Sly4 [19] and we 
disregard the Coulomb interaction. As the model space for the 
valence nucleons we consider 10 single-particle levels above the 
closed cores mentioned above. Since the mean field is axially sym-
metric, the levels are double degenerate over the projection of the 
angular momentum on z-axis. In addition, because we neglect the 
Coulomb interaction, the levels are also degenerate in isospin.

How to fix the pairing interactions in the two pairing channels 
is a debated issue. Here we shall use the prescriptions suggested 
in Refs. [4,20,21]. Thus, for the pairing force we take a zero range 
delta interaction V T =0,1(�r1, �r2) = V T =0,1

0 δ(�r1 − �r2). The matrix el-
ements of this interaction in the isovector and isoscalar channels 
are calculated by projecting out from the two-body wave function 
the component with the total spin S = 0 and, respectively, with 
(S = 1, Sz = 0). The strength of the force in the two channels is 
taken as V T =1

0 = V 0 and V T =0
0 = w V 0. Since the values of the 

constants V 0 and w are also a matter of debate, we have done 
calculations with various parameters, i.e., V 0 = {300, 465, 720} and 
w = {1, 1.25, 1.5, 175}. Because the conclusions relevant for this 
study are similar in all these calculations, below we are presenting 
only the results for V 0 = 465 and w = 1.5, which are the values 
suggested, respectively, in Ref. [20] and Ref. [4].

The results of the calculations are displayed in Table 1. In the 
second and third columns are given the pairing correlation en-
ergies obtained from exact diagonalization and from PQCM. The 
correlation energies are defined as the difference between the total 
energy and the energy obtained in the absence of the interaction. 
One can observe that for all nuclei the agreement between the 
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Table 1
Correlation energies calculated in the PQCM approach compared to the exact results. 
Are shown also the correlation energies obtained by minimizing the Hamiltonian (1)
with the isovector |iv〉 and isoscalar |is〉 states defined by Eqs. (7), (8). In the last 
column are given the overlaps between these states.

Exact |PQCM〉 |iv〉 |is〉 〈iv|is〉
20Ne 11.38 11.38 (0.00%) 11.31 (0.62%) 10.92 (4.00%) 0.976
24Mg 19.32 19.31 (0.03%) 19.18 (0.74%) 18.93 (2.00%) 0.980
28Si 18.74 18.74 (0.01%) 18.71 (0.14%) 18.54 (1.07%) 0.992

44Ti 7.095 7.094 (0.02%) 7.08 (0.18%) 6.30 (10.78%) 0.928
48Cr 12.78 12.76 (0.1%) 12.69 (0.67%) 12.22 (4.37%) 0.936
52Fe 16.39 16.34 (0.26%) 16.19 (1.17%) 15.62 (4.65%) 0.946

104Te 4.53 4.52 (0.06%) 4.49 (0.82%) 4.02 (11.26%) 0.955
108Xe 8.08 8.03 (0.61%) 7.96 (1.45%) 6.75 (16.47%) 0.814
112Ba 9.36 9.27 (0.93%) 9.22 (1.43%) 7.50 (19.81%) 0.784

exact and the PQCM results is excellent. Similar good agreements 
we have obtained for the other pairing forces mentioned above. In 
the columns 4 and 5 are given the results obtained when the min-
imization of the Hamiltonian (1) is done either with the quartet 
condensate (7) or the condensate of isoscalar pairs (8). It is sur-
prising to see that the two calculations give results which are not 
too far from the ones obtained with the full state (5). The fact 
that the calculations with the states (7) and (8) give compara-
ble results can be understood from the overlap 〈iv|is〉 shown in 
the last column of Table 1. One can thus see that this overlap is 
rather big for all calculated nuclei. From columns (4) and (5) we 
can notice that for all nuclei the errors corresponding to the calcu-
lations done with the quartet condensate (7) are smaller compared 
to the ones done with the condensate of isoscalar pairs (8), indi-
cating that the isovector pairing correlations are stronger than the 
isoscalar ones, especially in pf -shell nuclei and in the nuclei above 
100Sn. Nonetheless, in all nuclei the isoscalar pairing correlations 
are significant and, as pointed out by the large overlaps shown in 
column (6), they cannot be disentangled easily from the isovector 
pairing correlations.

Finally we would like to mention that the main conclusion of 
this study, namely the coexistence of the isovector and isoscalar 
pairing correlations for any N = Z nuclei, refers to pairing forces 
acting on time-reversed and axially-deformed states. It is however 
worth mentioning that a similar conclusion was found recently for 
spherically-symmetric Hamiltonians with J = 0 and J = 1 pairing 
forces in which all the components of the isoscalar J = 1 pairing 
force have been taking into account, not only the one scattering 
pairs in time-reversed states [15]. We recall that in Ref. [15] the 
isoscalar J = 1 pairing is treated by isoscalar quartets built by two 
J = 1 pairs coupled to the total angular momentum J = 0. This 
formalism cannot be applied for the isoscalar pairing interactions 
acting on deformed states considered in this study since in this 
case the pairs have not a well-defined angular momentum.

4. Summary

In this Letter we have proposed a new approach for treating the 
isovector and the isoscalar pairing interactions in axially-deformed 
N = Z nuclei. In this approach, which conserves exactly the par-
ticle number and the isospin, the ground state is constructed as 
a superposition of condensates formed by isovector quartets and 
isoscalar pairs. It is shown that this ansatz for the ground state 
is able to provide very accurate pairing correlation energies for all 
N = Z nuclei analyzed in this study. One of the important predic-
tions of this formalism is that the isovector and the isoscalar corre-
lations coexist for any pairing interaction. In addition, the realistic 
calculations presented in this Letter indicate that the isovector and 
the isoscalar correlations are strongly mixed together and difficult 
to disentangle from each other.
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