62 research outputs found

    Effect of variety and processing method on functional properties of traditional sweet potato flour (“elubo”) and sensory acceptability of cooked paste (“amala”)

    Get PDF
    “Amala” is a generic term in Nigeria, used to describe a thick paste prepared by stirring flour (“elubo”) from yam, cassava or unripe plantain, in hot water, to form a smooth consistency. In order to overcome its high perishability and increase the utilization of sweet potato roots, three varieties of sweet potato roots were processed into flour using two methods. The interactive effect of variety and the processing method had a significant effect (P < 0.05) on all the functional properties of the flour except yellowness, setback viscosity, and peak time. Acceptable sweet potato “amala” with average sensory acceptability score of 7.5 were obtained from yellow-fleshed varieties irrespective of the processing method. Flour that produced acceptable “amala” were characterized by lower values of protein (2.20–3.94%), fiber (1.30–1.65%), total sugar (12.41–38.83 lg/mg), water absorption capacity (168–215 g/100 g), water solubility (8.29–14.65%), swelling power (0.52–0.82 g/g), and higher peak time (6.9–8.7 min)

    The bone marrow compartment is modified in the absence of galectin-3

    Get PDF
    Galectin-3 (gal-3) is a β-galactoside binding protein present in multivalent complexes with an extracellular matrix and with cell surface glycoconjugates. In this context, it can deliver a variety of intracellular signals to modulate cell activation, differentiation and survival. In the hematopoietic system, it was demonstrated that gal-3 is expressed in myeloid cells and surrounding stromal cells. Furthermore, exogenous and surface gal-3 drive the proliferation of myeloblasts in a granulocyte–macrophage colony-stimulating factor (GM-CSF)-dependent manner. Here, we investigated whether gal-3 regulates the formation of myeloid bone marrow compartments by studying galectin-3−/− mice (gal-3−/−) in the C57BL/6 background. The bone marrow histology of gal-3−/− mice was significantly modified and the myeloid compartments drastically disturbed, in comparison with wild-type (WT) animals. In the absence of gal-3, we found reduced cell density and diaphyseal disorders containing increased trabecular projections into the marrow cavity. Moreover, myeloid cells presented limited capacity to differentiate into mature myeloid cell populations in gal-3−/− mice and the number of hematopoietic multipotent progenitors was increased relative to WT animals. In addition, bone marrow stromal cells of these mice had reduced levels of GM-CSF gene expression. Taken together, our data suggest that gal-3 interferes with hematopoiesis, controlling both precursors and stromal cells and favors terminal differentiation of myeloid progenitors rather than proliferation
    corecore