5 research outputs found

    Enhancement of the behavioral effects of endogenous and exogenous cannabinoid agonists by phenylmethyl sulfonyl fluoride

    No full text
    Marijuana’s effects in humans are most often reported as intoxicating or therapeutic; yet, some humans report dysphoria or other negative affect. To evaluate whether differences in endocannabinoid levels might account for this variability, the present study examined whether sensitivity to cannabinoids changed when anandamide (AEA) metabolism was inhibited through administration of phenylmethyl sulfonyl fluoride (PMSF) a non-specific irreversible amidase inhibitor. Male Long Evans rats were trained to discriminate 3 mg/kg Δ9-tetrahydrocannabinol (THC) versus vehicle in 2-lever drug discrimination procedure. ED50s for THC and CP 55,940 were lower when administered with PMSF than alone. PMSF administration also potentiated characteristic cannabimimetic effects of THC in ICR mice. Potentiation of AEA’s in vivo effects by PMSF were also observed, primarily as a consequence of PMSF inhibition of the enzyme fatty acid amide hydrolase. Enhancement of the effects of THC and CP 55,940 through this mechanism is unlikely, as these cannabinoids are predominantly metabolized through the P450 system. Mass spectrometry revealed that, in the presence of THC, endogenous AEA levels in the brain decreased and that this decrease was prevented by PMSF, suggesting that increased AEA levels may have acted additively with exogenously administered cannabinoids to increase cannabimimetic effects. These findings may account for the varying affect in response to marijuana in humans or cannabinoids in animals while also suggesting that metabolic inhibitors of AEA may potentiate marijuana’s intoxicating effects in humans

    Subject-specific finite element analysis to characterize the influence of geometry and material properties in Achilles tendon rupture

    No full text
    Achilles tendon injuries including rupture are one of the most frequent musculoskeletal injuries, but the mechanisms for these injuries are still not fully understood. Previous in vivo and experimental studies suggest that tendon rupture mainly occurs in the tendon mid-section and predominantly more in men than women due to reasons yet to be identified. Therefore we aimed to investigate possible mechanisms for tendon rupture using finite element (FE) analysis. Specifically, we have developed a framework for generating subject-specific FE models of human Achilles tendon. A total of ten 3D FE models of human Achilles tendon were generated. Subject-specific geometries were obtained using ultrasound images and a mesh morphing technique called Free Form Deformation. Tendon material properties were obtained by performing material optimization that compared and minimized difference in uniaxial tension experimental results with model predictions. Our results showed that both tendon geometry and material properties are highly subject-specific. This subject-specificity was also evident in our rupture predictions as the locations and loads of tendon ruptures were different in all specimens tested. A parametric study was performed to characterize the influence of geometries and material properties on tendon rupture. Our results showed that tendon rupture locations were dependent largely on geometry while rupture loads were more influenced by tendon material properties. Future work will investigate the role of microstructural properties of the tissue on tendon rupture and degeneration by using advanced material descriptions

    Overcoming the Psychiatric Side Effects of the Cannabinoid CB1 Receptor Antagonists: Current Approaches for Therapeutics Development

    No full text

    Potential metabolic and behavioural roles of the putative endocannabinoid receptors GPR18, GPR55 and GPR119 in feeding

    No full text
    corecore