704 research outputs found

    Parametric Analysis and Bandwidth Optimisation of Hybrid Linear-exponential Tapered Slot Vivaldi Antennas

    Get PDF
    This work presents an analysis of the effects of a hybrid linear-exponential tapered slot on the key properties of both the antipodal and co-planar Vivaldi antennas at low frequencies using parametric analysis and Nonlinear Sequential Programming optimisation. It was observed that the hybrid tapered slot can extend the lower frequency limit of the antipodal Vivaldi antenna however with slight deterioration of the gain and E-plane radiation pattern. On the other hand, the optimisation of the hybrid and conventional tapered slot co-planar Vivaldi antennas converged to antennas with the same performance results

    Adjusted Empirical Likelihood for Long-memory Time Series Models

    Full text link
    Empirical likelihood method has been applied to short-memory time series models by Monti (1997) through the Whittle's estimation method. Yau (2012) extended this idea to long-memory time series models. Asymptotic distributions of the empirical likelihood ratio statistic for short and long-memory time series have been derived to construct confidence regions for the corresponding model parameters. However, computing profile empirical likelihood function involving constrained maximization does not always have a solution which leads to several drawbacks. In this paper, we propose an adjusted empirical likelihood procedure to modify the one proposed by Yau (2012) for autoregressive fractionally integrated moving average (ARFIMA) model. It guarantees the existence of a solution to the required maximization problem as well as maintains same asymptotic properties obtained by Yau (2012). Simulations have been carried out to illustrate that the adjusted empirical likelihood method for different long-time series models provides better confidence regions and coverage probabilities than the unadjusted ones, especially for small sample sizes

    Integrated Ocean Drilling Program Expedition 317/319 Scientific Prospectus: Pacific Equatorial Age Transect

    No full text
    As the world's largest ocean, the Pacific is intricately linked to major changes in the global climate system. Throughout the Cenozoic, Pacific plate motion has had a northward component. Thus, the Pacific is unique in that the thick sediment bulge of biogenic-rich deposits from the currently narrowly focused zone of equatorial upwelling is slowly moving away from the Equator. Hence, older sections are not deeply buried and can be recovered by drilling. Previous drilling in this area during Ocean Drilling Program (ODP) Legs 138 and 199 was remarkably successful in giving us new insights into the workings of the climate and carbon system, productivity changes across the zone of divergence, time-dependent calcium carbonate dissolution, bio- and magnetostratigraphy, the location of the Intertropical Convergence Zone (ITCZ), and evolutionary patterns for times of climatic change and upheaval. Together with older Deep Sea Drilling Project drilling in the eastern equatorial Pacific, both legs also helped to delineate the position of the paleoequator and variations in sediment thickness from ~150Ā°W to 110Ā°W.The Pacific equatorial age transect (PEAT) science program is based on Integrated Ocean Drilling Program (IODP) Proposal 626 and consists of Expeditions 317 and 319, grouped into one science program. The goal is to recover a continuous Cenozoic record of the equatorial Pacific by drilling at the paleoposition of the Equator at successive crustal ages on the Pacific plate. Records collected from Expeditions 317 and 319 are to be joined with records of previous drilling during ODP Legs 138 and 199 to make a complete equatorial Pacific record from 0 to 55 Ma. Previously, ODP Legs 138 and 199 were designed as transects across the paleoequator in order to study the changing patterns of sediment deposition across equatorial regions at critical time intervals. As we have gained more information about the past movement of plates and when in Earth's history "critical" climate events took place, it becomes possible to drill an age transect ("flow-line") along the position of the Pacific paleoequator. The goal of this transect is to target important time slices where calcareous sediments have been best preserved and the sedimentary archive will allow us to reconstruct past climatic and tectonic conditions. Leg 199 enhanced our understanding of extreme changes of the calcium carbonate compensation depth (CCD) across major geological boundaries during the last 55 m.y. A very shallow CCD during most of the Paleogene makes it difficult to obtain well-preserved sediments during these stratigraphic intervals, but the strategy of site locations for the current two expeditions is designed to occupy the most promising sites and to obtain a unique sedimentary biogenic sediment archive for time periods just after the Paleocene/Eocene boundary event, Eocene cooling, the Eoceneā€“Oligocene transition, the "one cold pole" Oligocene, the Oligoceneā€“Miocene transition, and the Miocene. These new cores and data will significantly contribute to the objectives of the IODP Extreme Climates Initiative and will provide material that the previous legs were not able to recover.For logistical reasons, the PEAT science program is composed of two expeditions but is being implemented as a single science program to best achieve the overall objectives of Proposal 626. Participants on both expeditions (as well as approved shore-based scientists) will comprise a single science party with equal access to data and materials from both cruises. Sampling aboard the ship will be minimal, and the bulk of the sampling will be completed postcruise.The operational plan is to occupy eight sites along the age transect with the goal of recovering as complete a sedimentary succession as possible. This will probably require three holes to be cored at each site with wireline logging operations in one hole. Basement will be tagged in at least one of the holes. Expedition 317 will be directed primarily to sample the Neogene sites (proposed Sites PEAT-2C, 6C, and 7C, in priority order). The second expedition (319) will primarily sample the Paleogene sites (proposed Sites PEAT-1C, 3C, 4C, and possibly 5C, in priority order)

    Leaf heteroblasty is not an adaptation to shade: seedling anatomical and physiological responses to light

    Get PDF
    Heteroblastic plants produce markedly different leaf morphologies between juvenile and adult stages, while homoblastic plants exhibit little or gradual changes. We tested the hypothesis that the leaf morphology of the seedling stage of New Zealand heteroblastic species is advantageous in dealing with low light levels found in forest understorey. We used four independent contrasts of heteroblastic and homoblastic seedlings from the genera Aristotelia, Hoheria, Pseudopanax, and Melicope grown in full-sun (100% sunlight) and shade (5% sunlight) light environments in a glasshouse. The four heteroblastic species had consistently smaller leaves and lower specific leaf area than their paired homoblastic species both in sun and shade. In the shade, there were no consistent differences in leaf anatomy (thickness of leaf blade, cuticle, epidermis, and palisade mesophyll, and stomatal density Ɨ stomatal aperture length) or physiology (maximum photosynthetic rate, dark respiration, and light compensation point) between homoblastic and heteroblastic species. However, in the sun, heteroblastic A. fruticosa, P. crassifolius, and M. simplex had appreciably thicker leaf blades as well as higher maximum photosynthetic rates than their homoblastic congeners. These traits suggest heteroblastic seedlings possess leaf traits associated with an advantage in high-light environments. We conclude that the heteroblastic seedling leaf morphology is unlikely to be an adaptation to very low light. Alternative explanations for the functional significance of changing leaf morphology in association with life-stage should be sought

    Updated evaluation of potential ultra-low Q value Ī²\beta-decay candidates

    Full text link
    "Ultra-low" Q value Ī²\beta decays are referred to as such due to their low decay energies of less than āˆ¼\sim1 keV. Such a low energy decay is possible when the parent nucleus decays into an excited state in the daughter, with an energy close to that of the Q value. These decays are of interest as potential new candidates for neutrino mass determination experiments and as a testing ground for studies of atomic interference effects in the nuclear decay process. In this paper, we provide an updated evaluation of atomic mass data and nuclear energy level data to identify potential ultra-low Q value Ī²\beta decay candidates. For many of these candidates, more precise and accurate atomic mass data is needed to determine if the Q value of the potential ultra-low decay branch is energetically allowed and in fact ultra-low. The precise atomic mass measurements can be achieved via Penning trap mass spectrometry

    Interstitial cell network volume is reduced in the terminal bowel of ageing mice

    Get PDF
    Ageing is associated with impaired neuromuscular function of the terminal gastrointestinal (GI) tract, which can result in chronic constipation, faecal impaction and incontinence. Interstitial cells of cajal (ICC) play an important role in regulation of intestinal smooth muscle contraction. However, changes in ICC volume with age in the terminal GI tract (the anal canal including the anal sphincter region and rectum)have not been studied. Here, the distribution, morphology and network volume of ICC in the terminal GI tract of 3ā€to 4ā€monthā€old and 26ā€to 28ā€monthā€old C57BL/6mice were investigated. ICC were identified by immunofluorescence labelling of wholemount preparations with an antibody against cā€Kit. ICC network volume was measured by softwareā€based 3D volume rendering of confocal Z stacks. A significant reduction in ICC network volume per unit volume of muscle was measured in aged animals. No ageā€associated change in ICC morphology was detected. The thickness of the circular muscle layer of the anal sphincter region and rectum increased with age, while that in the distal colon decreased. These results suggest that ageing is associated with a reduction in the network volume of ICC in the terminal GI tract, which may influence the normal function of these regions
    • ā€¦
    corecore