1,144 research outputs found

    A qualitative study of mothers’ perceptions of weaning and the use of commercial infant food in the United Kingdom

    Get PDF
    Background: Commercially produced infant food has a different taste profile and nutritional content to homemade baby food and its consumption is now very widespread. This change in early food experience may lead to a reduced dietary variety and a decreased microbial load exposure.Objective: The purpose of this study was to gain insight into parental perceptions of complementary feeding, specifically opinions of commercially produced baby food, using qualitative research methods. Methods: Four focus group discussions took place (n = 24), with mothers of infants aged 4-7 months. Half of participants were first time mothers and a third had experience weaning infants with symptoms of cows' milk allergy. Participants were prompted with questions about complementary feeding and shown several different products to stimulate discussion. Results: Thematic analysis of focus groups indicated that three distinctive groups of mothers exis

    Statistics of counter-streaming solar wind suprathermal electrons at solar minimum : STEREO observations

    Get PDF
    Previous work has shown that solar wind suprathermal electrons can display a number of features in terms of their anisotropy. Of importance is the occurrence of counter-streaming electron patterns, i.e., with "beams" both parallel and anti-parallel to the local magnetic field, which is believed to shed light on the heliospheric magnetic field topology. In the present study, we use STEREO data to obtain the statistical properties of counter-streaming suprathermal electrons (CSEs) in the vicinity of corotating interaction regions (CIRs) during the period March–December 2007. Because this period corresponds to a minimum of solar activity, the results are unrelated to the sampling of large-scale coronal mass ejections, which can lead to CSE owing to their closed magnetic field topology. The present study statistically confirms that CSEs are primarily the result of suprathermal electron leakage from the compressed CIR into the upstream regions with the combined occurrence of halo depletion at 90° pitch angle. The occurrence rate of CSE is found to be about 15–20% on average during the period analyzed (depending on the criteria used), but superposed epoch analysis demonstrates that CSEs are preferentially observed both before and after the passage of the stream interface (with peak occurrence rate >35% in the trailing high speed stream), as well as both inside and outside CIRs. The results quantitatively show that CSEs are common in the solar wind during solar minimum, but yet they suggest that such distributions would be much more common if pitch angle scattering were absent. We further argue that (1) the formation of shocks contributes to the occurrence of enhanced counter-streaming sunward-directed fluxes, but does not appear to be a necessary condition, and (2) that the presence of small-scale transients with closed-field topologies likely also contributes to the occurrence of counter-streaming patterns, but only in the slow solar wind prior to CIRs

    Connecting speeds, directions and arrival times of 22 coronal mass ejections from the Sun to 1 AU

    Full text link
    Forecasting the in situ properties of coronal mass ejections (CMEs) from remote images is expected to strongly enhance predictions of space weather, and is of general interest for studying the interaction of CMEs with planetary environments. We study the feasibility of using a single heliospheric imager (HI) instrument, imaging the solar wind density from the Sun to 1 AU, for connecting remote images to in situ observations of CMEs. We compare the predictions of speed and arrival time for 22 CMEs (in 2008-2012) to the corresponding interplanetary coronal mass ejection (ICME) parameters at in situ observatories (STEREO PLASTIC/IMPACT, Wind SWE/MFI). The list consists of front- and backsided, slow and fast CMEs (up to 2700kms12700 \: km \: s^{-1}). We track the CMEs to 34.9±7.134.9 \pm 7.1 degrees elongation from the Sun with J-maps constructed using the SATPLOT tool, resulting in prediction lead times of 26.4±15.3-26.4 \pm 15.3 hours. The geometrical models we use assume different CME front shapes (Fixed-Φ\Phi, Harmonic Mean, Self-Similar Expansion), and constant CME speed and direction. We find no significant superiority in the predictive capability of any of the three methods. The absolute difference between predicted and observed ICME arrival times is 8.1±6.38.1 \pm 6.3 hours (rmsrms value of 10.9h). Speeds are consistent to within 284±288kms1284 \pm 288 \: km \: s^{-1}. Empirical corrections to the predictions enhance their performance for the arrival times to 6.1±5.06.1 \pm 5.0 hours (rmsrms value of 7.9h), and for the speeds to 53±50kms153 \pm 50 \: km \: s^{-1}. These results are important for Solar Orbiter and a space weather mission positioned away from the Sun-Earth line.Comment: 19 pages, 13 figures, accepted for publication in the Astrophysical Journa

    Forecasting Periods of Strong Southward Magnetic Field Following Interplanetary Shocks

    Full text link
    Long periods of strong southward magnetic fields are known to be the primary cause of intense geomagnetic storms. The majority of such events are caused by the passage over Earth of a magnetic ejecta. Irrespective of the interplanetary cause, fast-forward shocks often precede such strong southward Bz_{z} periods. Here, we first look at all long periods of strong southward magnetic fields as well as fast-forward shocks measured by the \textit{Wind} spacecraft in a 22.4-year span. We find that 76{\%} of strong southward Bz_{z} periods are preceded within 48 hours by at least a fast-forward shock but only about 23{\%} of all shocks are followed within 48 hours by strong southward Bz_{z} periods. Then, we devise a threshold-based probabilistic forecasting method based on the shock properties and the pre-shock near-Earth solar wind plasma and interplanetary magnetic field characteristics adopting a `superposed epoch analysis'-like approach. Our analysis shows that the solar wind conditions in the 30 minutes interval around the arrival of fast-forward shocks have a significant contribution to the prediction of long-duration southward Bz_{z} periods. This probabilistic model may provide on average a 14-hour warning time for an intense and long-duration southward Bz_{z} period. Evaluating the forecast capability of the model through a statistical and skill score-based approach reveals that it outperforms a coin-flipping forecast. By using the information provided by the arrival of a fast-forward shock at L1, this model represents a marked improvement over similar forecasting methods. We outline a number of future potential improvements.Comment: published in Space Weather, 22 Nov 201

    STEREO and Wind observations of a fast ICME flank triggering a prolonged geomagnetic storm on 5-7 April 2010

    Full text link
    On 5 April 2010 an interplanetary (IP) shock was detected by the Wind spacecraft ahead of Earth, followed by a fast (average speed 650 km/s) IP coronal mass ejection (ICME). During the subsequent moderate geomagnetic storm (minimum Dst = -72 nT, maximum Kp=8-), communication with the Galaxy 15 satellite was lost. We link images from STEREO/SECCHI to the near-Earth in situ observations and show that the ICME did not decelerate much between Sun and Earth. The ICME flank was responsible for a long storm growth phase. This type of glancing collision was for the first time directly observed with the STEREO Heliospheric Imagers. The magnetic cloud (MC) inside the ICME cannot be modeled with approaches assuming an invariant direction. These observations confirm the hypotheses that parts of ICMEs classified as (1) long-duration MCs or (2) magnetic-cloud-like (MCL) structures can be a consequence of a spacecraft trajectory through the ICME flank.Comment: Geophysical Research Letters (accepted); 3 Figure

    On the Spatial Coherence of Magnetic Ejecta: Measurements of Coronal Mass Ejections by Multiple Spacecraft Longitudinally Separated by 0.01 AU

    Full text link
    Measurements of coronal mass ejections (CMEs) by multiple spacecraft at small radial separations but larger longitudinal separations is one of the ways to learn about the three-dimensional structure of CMEs. Here, we take advantage of the orbit of the Wind spacecraft that ventured to distances of up to 0.012 astronomical units (au) from the Sun-Earth line during the years 2000 to 2002. Combined with measurements from ACE, which is in a tight halo orbit around L1, the multipoint measurements allow us to investigate how the magnetic field inside magnetic ejecta (MEs) changes on scales of 0.005 - 0.012 au. We identify 21 CMEs measured by these two spacecraft for longitudinal separations of 0.007 au or more. We find that the time-shifted correlation between 30-minute averages of the non-radial magnetic field components measured at the two spacecraft is systematically above 0.97 when the separation is 0.008 au or less, but is on average 0.89 for greater separations. Overall, these newly analyzed measurements, combined with 14 additional ones when the spacecraft separation is smaller, point towards a scale length of longitudinal magnetic coherence inside MEs of 0.25 - 0.35 au for the magnitude of the magnetic field but 0.06 - 0.12 au for the magnetic field components. This finding raises questions about the very nature of MEs. It also highlights the need for additional "mesoscale" multi-point measurements of CMEs with longitudinal separations of 0.01 - 0.2 au.Comment: Published in ApJL, 6 page

    Synthesis and microstructural evolution in ternary metalloceramic Ti3SiC2 consolidated via the Maxthal 312 powder route

    Get PDF
    A bulk specimen containing Ti3SiC2, TiSi2 and TiC was prepared through an in situ spark plasma sintering/solid-liquid reaction powder metallurgy method using the Maxthal 312 (nominally-Ti3SiC2) powder as a starting material. The reaction mechanism, phase constituents and evolution of the microstructure were systematically investigated by X-ray diffraction (XRD), optical microscopy, scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS) system, transmission electron microscopy (TEM), Raman spectroscopy, differential scanning calorimetry (DSC) and Vickers microhardness testing. Phase analysis and microstructural characterization revealed that the bulk sample contained binary ancillary phases, possibly due to Si evaporation and/or carburization. The deformed microstructure around the indents revealed evidence of plasticity, intrinsic lubricity and toughening. The Microstructural and orientation relationships between the phases contained in the bulk sample are reported

    The POlarised GLEAM Survey (POGS) II: Results from an All-Sky Rotation Measure Synthesis Survey at Long Wavelengths

    Full text link
    The low-frequency linearly-polarised radio source population is largely unexplored. However, a renaissance in low-frequency polarimetry has been enabled by pathfinder and precursor instruments for the Square Kilometre Array. In this second paper from the POlarised GaLactic and Extragalactic All-Sky Murchison Widefield Array (MWA) Survey -- the POlarised GLEAM Survey, or POGS -- we present the results from our all-sky MWA Phase I Faraday Rotation Measure survey. Our survey covers nearly the entire Southern sky in the Declination range 82-82^{\circ} to +30+30^{\circ} at a resolution between around three and seven arcminutes (depending on Declination) using data in the frequency range 169-231 MHz. We have performed two targeted searches: the first covering 25,489 square degrees of sky, searching for extragalactic polarised sources; the second covering the entire sky South of Declination +30+30^{\circ}, searching for known pulsars. We detect a total of 517 sources with 200 MHz linearly-polarised flux densities between 9.9 mJy and 1.7 Jy, of which 33 are known radio pulsars. All sources in our catalogues have Faraday rotation measures in the range 328.07-328.07 rad m2^{-2} to +279.62+279.62 rad m2^{-2}. The Faraday rotation measures are broadly consistent with results from higher-frequency surveys, but with typically more than an order of magnitude improvement in the precision, highlighting the power of low-frequency polarisation surveys to accurately study Galactic and extragalactic magnetic fields. We discuss the properties of our extragalactic and known-pulsar source population, how the sky distribution relates to Galactic features, and identify a handful of new pulsar candidates among our nominally extragalactic source population.Comment: Replacement of previous version. Only change is minor updates to catalogues (see ancillary files) which now contain bib code of finalised manuscript (published in PASA). Manuscript has 31 pages, 10 figures, 5 tables. Four Appendices are included in the ancillary material, showing further Figures, continuum spectra for a handful of selected sources, and RM spectra for all 517 source

    The POlarised GLEAM Survey (POGS) II: Results from an all-sky rotation measure synthesis survey at long wavelengths

    Get PDF
    The low-frequency linearly polarised radio source population is largely unexplored. However, a renaissance in low-frequency polarimetry has been enabled by pathfinder and precursor instruments for the Square Kilometre Array. In this second paper from the POlarised GaLactic and Extragalactic All-Sky MWA Survey-the POlarised GLEAM Survey, or POGS-we present the results from our all-sky MWA Phase I Faraday Rotation Measure survey. Our survey covers nearly the entire Southern sky in the Declination range to at a resolution between around three and seven arcminutes (depending on Declination) using data in the frequency range 169-231 MHz. We have performed two targeted searches: the first covering 25 489 square degrees of sky, searching for extragalactic polarised sources; the second covering the entire sky South of Declination, searching for known pulsars. We detect a total of 517 sources with 200 MHz linearly polarised flux densities between 9.9 mJy and 1.7 Jy, of which 33 are known radio pulsars. All sources in our catalogues have Faraday rotation measures in the range to rad m-2. The Faraday rotation measures are broadly consistent with results from higher-frequency surveys, but with typically more than an order of magnitude improvement in the precision, highlighting the power of low-frequency polarisation surveys to accurately study Galactic and extragalactic magnetic fields. We discuss the properties of our extragalactic and known-pulsar source population, how the sky distribution relates to Galactic features, and identify a handful of new pulsar candidates among our nominally extragalactic source population
    corecore