135 research outputs found

    Mechanical properties of nanosprings

    Get PDF
    Nanostructures (nanotubes, nanowires, etc.) have been the object of intense theoretical and experimental investigations in recent years. Among these structures, helical nanosprings or nanocoils have attracted particular interest due to their special mechanical properties. In this work, we investigated structural properties of nanosprings in the Kirchhoff rod model. We derived expressions that can be used experimentally to obtain nanospring Young's modulus and Poisson's ratio values. Our results also might explain why the presence of catalytic particles is so important in nanostructure growth.921

    Scale Effects on the Ballistic Penetration of Graphene Sheets

    Get PDF
    AbstractCarbon nanostructures are promising ballistic protection materials, due to their low density and excellent mechanical properties. Recent experimental and computational investigations on the behavior of graphene under impact conditions revealed exceptional energy absorption properties as well. However, the reported numerical and experimental values differ by an order of magnitude. In this work, we combined numerical and analytical modeling to address this issue. In the numerical part, we employed reactive molecular dynamics to carry out ballistic tests on single, double, and triple-layered graphene sheets. We used velocity values within the range tested in experiments. Our numerical and the experimental results were used to determine parameters for a scaling law. We find that the specific penetration energy decreases as the number of layers (N) increases, from ∼15 MJ/kg for N = 1 to ∼0.9 MJ/kg for N = 350, for an impact velocity of 900 m/s. These values are in good agreement with simulations and experiments, within the entire range of N values for which data is presently available. Scale effects explain the apparent discrepancy between simulations and experiments.</jats:p

    Prediction of giant electroactuation for papyruslike carbon nanoscroll structures: First-principles calculations

    Get PDF
    We study by first-principles calculations the electromechanical response of carbon nanoscroll structures. We show that although they present a very similar behavior to carbon nanotubes in their axial deformation sensitivity, they exhibit a radial response upon charge injection which is up to one order of magnitude larger. In association with their high stability, this behavior makes them a natural choice for a new class of very efficient nanoactuators.74

    Theoretical approach to identify carcinogenic activity of polycyclic aromatic hydrocarbons

    Get PDF
    Polycyclic aromatic hydrocarbons (PAHs) are a class of planar molecules that can induce chemical carcinogenesis. Their carcinogenic powers vary in a large range, from the very strong carcinogens to the inactive ones. Many models have been proposed to explain the PAHs' carcinogenic activity, but all of them present some failures. Here we introduce a new methodology to identify PAHs' carcinogenic activity based on the concept of electronic local density of states (LDOS). We show that the analysis of the molecular energy levels in association with the LDOS calculated over the ring which contains the highest bond order of the molecule allows simple rules to identify whether a specific PAH molecule will present (or not) carcinogenic activity.7761186118

    NEAR-RESONANT SCATTERING FROM NONSYMMETRIC DIMERS - APPLICATIONS TO SUBSTITUTED POLYANILINES

    Get PDF
    In this work we show that, beyond the prediction of the random dimer model [Wu and Phillips, Phys. Rev. Lett. 66, 1366 (1991)], it is possible to have near resonant scattering from nonsymmetric dimers. It is shown by direct density of states calculations as well as by a procedure similar to the random dimer model that protonated chains of alkyl-substituted polyanilines support extended electronic states at the Fermi energy when a disordered distribution of symmetric or asymmetric bipolarons is present. An extension of the random dimer model to include resonant scattering by nonsymmetric dimers is proposed.7391267127

    INSULATOR-TO-METAL TRANSITION IN POLYTHIOPHENE

    Get PDF
    In the present work, the electronic structure of polythiophene at several doping levels is investigated by the use of the Huckel Hamiltonian with sigma-bond compressibility. Excess charges are assumed to be stored in conformational defects of the bipolaron type. The Hamiltonian matrix elements representative of a bipolaron are obtained from a previous thiophene oligomer calculation, and then transferred to very long chains. Negative factor counting and inverse iteration techniques have been used to evaluate densities of states and wave functions, respectively. Several types of defect distributions were analyzed. Our results are consistent with the following: (i) the bipolaron lattice does not present a finite density of states at the Fermi energy at any doping level; (ii) bipolaron clusters show an insulator-to-metal transition at 8 mol% doping level; (iii) segregation disorder shows an insulator-to-metal transition for doping levels in the range 20-30 mor %.49297998

    A PARAMETRIC METHOD-3 (PM3) STUDY OF TRANS-STILBENE

    Get PDF
    We report a comparative modified neglect of diatomic overlap (MNDO), Austin method one (AMI), and parametric method 3 (PM3) study of trans-stilbene (tS) in its ground, excited (singlet and triplet), and ionic (positive and negative polarons and bipolarons) states. We have also calculated the barrier for ring rotation about the backbone single bond. Our results show that PM3 geometries are superior to MNDO and AMI, at least for tS. PM3 predicts, in contrast with MNDO, AMI and even ab initio 3-21G, a coplanar structure for tS, in accordance with recent experimental data. Singlet and triplet energies obtained from heats of formation are in surprisingly good agreement with experimental data.9843016302

    Carbon nanotube with square cross-section: An ab initio investigation

    Get PDF
    Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Recently, Lagos et al. [Nat. Nanotechnol. 4, 149 (2009)] reported the discovery of the smallest possible silver square cross-section nanotube. A natural question is whether similar carbon nanotubes can exist. In this work we report ab initio results for the structural, stability, and electronic properties for such hypothetical structures. Our results show that stable (or at least metastable) structures are possible with metallic properties. They also show that these structures can be obtained by a direct interconversion from SWNT (2,2). Large finite cubanelike oligomers, topologically related to these new tubes, were also investigated. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3483237]13312Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    Rotational dynamics and polymerization of C(60) in C(60)-cubane crystals: A molecular dynamics study

    Get PDF
    Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)We report classical and tight-binding molecular dynamics simulations of the C(60) fullerene and cubane molecular crystal in order to investigate the intermolecular dynamics and polymerization processes. Our results show that, for 200 and 400 K, cubane molecules remain basically fixed, presenting only thermal vibrations, while C(60) fullerenes show rotational motions. Fullerenes perform "free" rotational motions at short times (less than or similar to 1 ps), small amplitude hindered rotational motions (librations) at intermediate times, and rotational diffusive dynamics at long times (greater than or similar to 10 ps). The mechanisms underlying these dynamics are presented. Random copolymerizations among cubanes and fullerenes were observed when temperature is increased, leading to the formation of a disordered structure. Changes in the radial distribution function and electronic density of states indicate the coexistence of amorphous and crystalline phases. The different conformational phases that cubanes and fullerenes undergo during the copolymerization process are discussed.1296IMMP/MCTIN/MCTTHEO-NANOConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES
    corecore