
P H Y S I C A L R E V I E W L E T T E R S week ending
30 APRIL 2004VOLUME 92, NUMBER 17

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio da Producao Cientifica e Intelectual da Unicamp
Mechanical Properties of Nanosprings

Alexandre F. da Fonseca1,2,* and Douglas S. Galvão3,†

1Department of Chemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854-8087, USA
2Instituto de Fı́sica, Universidade de São Paulo, USP Caixa Postal 66318, 05315-970, São Paulo, Brazil

3Instituto de Fı́sica ‘‘Gleb Wataghin’’, Universidade Estadual de Campinas, Unicamp 13083-970, Campinas, SP, Brazil
(Received 5 November 2003; published 30 April 2004)
175502-1
Nanostructures (nanotubes, nanowires, etc.) have been the object of intense theoretical and experi-
mental investigations in recent years. Among these structures, helical nanosprings or nanocoils have
attracted particular interest due to their special mechanical properties. In this work, we investigated
structural properties of nanosprings in the Kirchhoff rod model. We derived expressions that can be
used experimentally to obtain nanospring Young’s modulus and Poisson’s ratio values. Our results also
might explain why the presence of catalytic particles is so important in nanostructure growth.
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Also, there are few proposed approaches for the physical
characterization of these structures. Volodin et al. [12]

the local cross section [28]. These equations contain the
forces and torques, plus a triad of vectors describing the
The development of structures as nanotubes and, more
recently, nanowires has attracted great attention from the
scientific community to the field of nanoscience due to the
large range of possible applications and new physical
phenomena [1,2]. The great variety of electrical and
mechanical properties presented by nanostructures can
be exploited for the development of new technological
applications [2–6].

Among the members of the family of these nanostruc-
tures, helical nanosprings or nanocoils, in particular,
have special mechanical properties for potential applica-
tions in nanoengineering.

It is known [7] that the synthesis of nanowires and
nanosprings requires the presence of a metallic catalyst.
Following the vapor-liquid-solid (VLS) growth model,
known since 1964 [7], a liquid droplet of a metal absorbs
the building block material for the growth of the nano-
wire from the surrounding vapor and, after supersatura-
tion of the absorbed material within the droplet, the
excess material precipitates at the liquid/solid interface
forming the wire beneath the metallic droplet.

In the case of helical structures, mechanisms for heli-
cal growth have been recently proposed. Amelinckx et al.
[8] introduced the concept of a spatial-velocity hodograph
to describe the helical growth of nanotubes of carbon,
where the asymmetry arises from variations in the veloc-
ity of the growth in the perimeter of the carbon nanotube.
McIlroy et al. [9] developed a modified VLS growth
model to explain the formation of helical nanosprings
based on the interactions between the metallic catalyst
and the nanowire. The interesting feature in this case is
that the structure of the nanospring is amorphous [9]. The
modified VLS growth model can, therefore, be applied to
nanosprings of different materials [9–11].

Besides the initial success of the proposed growth
models for the helical structures, the experimental con-
trol of the synthesis of nanosprings is still in development.
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have studied the elastic properties of helix-shaped nano-
tubes using atomic force microscopy (AFM). They used a
circular beam approximation to model the elastic re-
sponse of a single winding of coiled nanotube. Recently,
Chen et al. [13] measured the spring constant of carbon
nanocoils and used a classical approach which relates the
spring constant to the shear modulus of the composite
material.

In this Letter, we propose the application of the
Kirchhoff rod model [14] to the analysis of the elastic
properties of the helical nanosprings. This approach pro-
vides a more complete framework to study both statics
and dynamics of the nanosprings. Also, we can obtain a
set of expressions that permits us to measure the elastic
parameters of the material that composes the nanospring
and to directly compare them with the values for the
bulk case.

The Kirchhoff model has been extensively used to
study the statics and the dynamics of continuous rods.
Examples of applications of this model are the study of
the structure and elasticity of DNA [15–21], the tendril
perversion of climbing plants [22,23], and slender cables
subject to thrust, torsion, and gravity [24]. Since some of
the helical nanostructures are amorphous, a continuous
mechanical model, as the Kirchhoff one, is perfectly
appropriated to investigate their elastic properties. In
fact, in the case of nanotubes, the literature presents
examples of modeling them as solid cylinders [25,26],
or as solid hollow cylinders [27].

In Kirchhoff ’s theory, the rod is seen as an assembly
of short segments. Each segment is loaded by contact
forces from the adjacent ones. The classical equations
for the conservation laws of linear and angular momen-
tum are applied to each segment in order to obtain a one-
dimensional set of differential equations for the statics
and dynamics of the rod in the approximation of the
small curvature of the rod as compared to the radius of
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FIG. 1. Outline of the experiment to measure Young’s modu-
lus E. The extremities of the nanospring must be held fixed. The
helix shown in this figure is proportional to the nanospring of
radius R � 51 nm and P � 85 nm. See the text for the details.
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deformations of the rod. In this Letter, we shall be con-
cerned only with static solutions and, therefore, only the
static Kirchhoff equations will be presented:

F 0 � 0; (1)

M 0 � d3 � F � 0; (2)

where F and M are the total force and torque across the
cross sections of the rod, respectively. d3 is the vector
tangent to the centerline or the axis of the rod. The prime
denotes the derivative with respect to the arclength s of
the rod. In order to solve the equations, we introduce the
constitutive relationship from linear elasticity theory [28]
for a rod with a circular cross section:

M � EI�k1 � k�0�1 �d1 � EI�k2 � k�0�2 �d2

� EI��k3 � k�0�3 �d3; (3)

where d1 and d2 lie in the plane normal to d3, for ex-
ample, along the principal axes of the cross section. � �
2�=E is related to Poisson’s ratio � through

� � �1� ���1: (4)

E and � are the Young’s and shear moduli, respectively. I
is the moment of inertia of the circular rod given by I �
�
r4�=4, with r being the cross-section radius. ki, i �
1; 2; 3, are the components of the so-called twist vector,
k, which defines the variation of the director basis
�d1;d2;d3� with the arclength s through the expression:
d0
i � k� di, i � 1; 2; 3. k�0�i , i � 1; 2; 3, are the curvature

and torsion of the rod in its unstressed shape. They are
also known as the intrinsic curvature and intrinsic tor-
sion of the rod.

A helical solution of the Kirchhoff Eqs. (1)–(3) is given
by the following expressions:

k � d1 � �d3; (5)

F � ��k; (6)

where  and � are the geometric parameters curva-
ture and torsion of a helix, respectively, and � �
�0=� � 1� ����0=�� � 1	. 0 and �0 are the intrinsic
curvature and torsion of the helix (k�0� � 0d1 � �0d3),
respectively.

The spatial solution for the axis of a helix with curva-
ture  and torsion � can be written as

x �s� �


�2 cos��s�e1 �


�2 sin��s�e2 �
�
�
se3; (7)

where � �
�����������������
2 � �2

p
. �e1; e2; e3� is a fixed Cartesian ba-

sis. The radius R and pitch P of the helix are related to the
curvature and torsion through

 � R�2; � �
P
2


�2: (8)
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It is possible to show that � is also given by

� �
1������������������

R2 � P2

4
2

q : (9)

McMillen and Goriely [23] have obtained a direct
expression for Hooke’s constant h of a helix with intrinsic
curvature k�0� � 0d1 � �0d3, in terms of the properties
of the material from which the rod is made, the Young’s
modulus, and the moment of inertia of the cross section. It
is given by

h �
EI�3

0

2
N

�
1�

�20
2
0

�
; (10)

where �0 �
�����������������
2
0 � �20

q
and N is the number of coils.

Following McMillen and Goriely’s paper, we derived a
simple expression for the component of the torque in the
e3 direction, Mz:

Mz � EI�� 0�

�
� �EI��� �0�

�
�
: (11)

From Eqs. (10) and (11) we can verify, experimentally,
two properties of the material from which the nanospring
is made: the Young’s modulus E and the Poisson’s ratio �.

We can test Eq. (10) using the parameters for a unit
nanocoil considered by Chen et al. [13]: the diameter of
the nanowire d � 120 nm, the radius of the helix R �
420 nm, and the pitch of the helix P � 2000 nm. The
material has a Poisson’s ratio � � 0:27 and a shear modu-
lus � � 2:5 GPa. From Eq. (4) and the relation � �
2�=E, we obtain E � 6:35 GPa. Using Eqs. (8) and (9)
and the measured Hooke’s constant of the nanocoil, h �
0:12 N=m [13], we obtain, with Eq. (10), E ’ 6:88 GPa
for N � 1 (unit nanocoil).

We could not test Eq. (11) because of the lack of
experimental measuring of the torque of the nanosprings.

Figure 1 shows a scheme to obtain Young’s modulus by
measuring the force T along the axis of the nanospring
and its elongation d due to this force. It is an analog
scheme to one that Chen et al. used to measure the spring
constant of carbon nanocoils [13]. Equation (10) can be
175502-2
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used to obtain the Young’s modulus. It requires the knowl-
edge of the moment of inertia of the cross-section radius,
I, and the values of the curvature, 0, and the torsion, �0,
of the unstressed helix that can be obtained by measuring
the radius, R, and the pitch, P, of the nanospring, before
applying the force [R1 and P1 of Fig. 2, and using the
Eqs. (8) and (9)].

Figure 2 shows a scheme to obtain Poisson’s ratio. By
measuring the applied torque, in the direction of the axis
of the helix, and measuring the resultant curvature, ,
and the resultant torsion, � [by measuring the radius R2

and the pitch P2 of the stressed helix and using the
Eqs. (8) and (9) to obtain  and �], we can use Eq. (11)
to obtain the parameter �. Here, the values of 0, �0, I,
and the measured Young’s modulus E in the first scheme,
are needed. Poisson’s ratio, �, can, therefore, be obtained
using Eq. (4).

In both schemes, the extremities of the nanospring
must be held fixed in order to avoid relaxation. The helices
seen in Figs. 1 and 2 are in scale with a nanospring of
radius R � 51 nm and pitch P � 85 nm.

It is interesting to investigate if the measured values of
the Young’s modulus and the Poisson’s ratio are the same
as the bulk elastic modulus of the material from which the
nanospring is made. The motivation is the recent mea-
surement of the Young’s modulus of gold thin films,
deposited in AFM cantilevers [29]. It was found that
the Young’s modulus of gold thin films is about 12%
smaller than its bulk elastic modulus [29].

The existence of nonuniform helical nanosprings
have been reported in Ref. [10]. The tridimensional
structures of these nanosprings could be investigated
with the Kirchhoff rod model. Variations in the rod di-
ameter can be considered in the Kirchhoff equations and
the possible tridimensional structures can be numerically
integrated [30].

Recently, Goriely and Tabor developed a dynamical
method to test the stability of the equilibrium solutions
of the Kirchhoff equations [31]. They showed [32] that
helices with intrinsic curvature (0 � 0 and �0 � 0) do
not admit unstable modes being, therefore, dynamically
stable. McMillen and Goriely [23] also studied how dif-
FIG. 2. Outline of the experiment to measure Poisson’s ratio
�. The extremities of the nanospring must be held fixed. See the
text for the details.
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ferential growth can affect the intrinsic curvature of
biological materials as the climbing plants. Our results
show that the same conclusions are valid for nanosprings.
This is a very important result that could explain why the
presence of metallic catalyst is so important to the growth
of nanostructures such as nanotubes and nanowires. It
was proposed that one of the functions of the metallic
catalyst is to promote differential growth in the nano-
structures [3]. Our results suggest that the physical
mechanism behind this differentiated growth is that the
catalytic particles by their intrinsic asymmetric geomet-
ric features induce intrinsic curvature that gives dynami-
cal stability to the nanosprings. Particles that would favor
higher curvatures (up to a certain limit) would be cata-
lytically more efficient.

The importance of the dynamical stability is that it
permits the process of asymmetric growth to evolve uni-
formly. At the same time, the asymmetric growth gen-
erates the intrinsic curvature necessary for the stability.
Thus, the asymmetric growth provided by the asym-
metric geometric features of the metallic catalyst is a
self-sustained process, from the mechanical point of
view. From the thermodynamic point of view, the asym-
metric growth depends on the asymmetry of the work of
adhesion, i.e., the work required to shear the metallic
catalyst from the nanowire [9], and the energy needed
to break the droplet-nanowire bond is thermodynami-
cally proportional to the work of adhesion.

It is interesting to mention the recent report on sponta-
neous polarization-induced growing of nanosprings and
nanorings of piezoelectric zinc oxide (ZnO) by Kong and
Wang [33] produced without using catalyst particles.
They found that the mechanism for the helical growth
is the consequence of minimizing the total energy con-
tributed by spontaneous polarization and elasticity. The
electrostatic forces play a rule of the external forces
holding the rod in the helical shape. In contrast with
structures grown with the presence of catalyst particles,
their structures do not present intrinsic helical curvatures.
They are also not very uniform. This is an indirect
evidence that the catalyst particles can drive the asym-
metric growth, providing the necessary dynamical stabil-
ity for the uniform growing. This example highlights the
importance of the relationship between the metallic cata-
lyst and the dynamical stability of the nanosprings.

In summary, we have demonstrated that the Kirchhoff
rod model is an efficient tool to study both statics and
dynamics of a great range of different types of filaments,
especially to nanosprings. We derived expressions for
Hooke’s constant and an applied torque for the nano-
spring, and we proposed two schemes for the measure-
ment of the two elastic constants of the material from
which the nanospring is made: the Young’s modulus and
the Poisson’s ratio. The Kirchhoff model can also be
applied to the study of nanowires since these structures
are also amorphous. This physical characterization of the
175502-3
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nanosprings is an important step for the development of
applications in nanoengineering. Another important re-
sult from our model is that intrinsic curvature increases
the dynamical stability of the nanostructures and can
explain why the presence of catalytic particles (that in-
duce intrinsic curvature) is so important to grow nano-
structures. We hope the present study can stimulate
further experimental investigations on the relationship
between the catalytic particles and the nanostructure
stability.
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