6,520 research outputs found
Dual characterization of critical fluctuations: Density functional theory & nonlinear dynamics close to a tangent bifurcation
We improve on the description of the relationship that exists between
critical clusters in thermal systems and intermittency near the onset of chaos
in low-dimensional systems. We make use of the statistical-mechanical language
of inhomogeneous systems and of the renormalization group (RG) method in
nonlinear dynamics to provide a more accurate, formal, approach to the subject.
The description of this remarkable correspondence encompasses, on the one hand,
the density functional formalism, where classical and quantum mechanical
analogues match the procedure for one-dimensional clusters, and, on the other,
the RG fixed-point map of functional compositions that captures the essential
dynamical behavior. We provide details of how the above-referred theoretical
approaches interrelate and discuss the implications of the correspondence
between the high-dimensional (degrees of freedom) phenomenon and
low-dimensional dynamics.Comment: 8 figure
Response time to colored stimuli in the full visual field
Peripheral visual response time was measured in seven dark adapted subjects to the onset of small (45' arc diam), brief (50 msec), colored (blue, yellow, green, red) and white stimuli imaged at 72 locations within their binocular field of view. The blue, yellow, and green stimuli were matched for brightness at about 2.6 sub log 10 units above their absolute light threshold, and they appeared at an unexpected time and location. These data were obtained to provide response time and no-response data for use in various design disciplines involving instrument panel layout. The results indicated that the retina possesses relatively concentric regions within each of which mean response time can be expected to be of approximately the same duration. These regions are centered near the fovea and extend farther horizontally than vertically. Mean foveal response time was fastest for yellow and slowest for blue. Three and one-half percent of the total 56,410 trials presented resulted in no-responses. Regardless of stimulus color, the lowest percentage of no-responses occurred within 30 deg arc from the fovea and the highest within 40 deg to 80 deg arc below the fovea
Regeneration of Stochastic Processes: An Inverse Method
We propose a novel inverse method that utilizes a set of data to construct a
simple equation that governs the stochastic process for which the data have
been measured, hence enabling us to reconstruct the stochastic process. As an
example, we analyze the stochasticity in the beat-to-beat fluctuations in the
heart rates of healthy subjects as well as those with congestive heart failure.
The inverse method provides a novel technique for distinguishing the two
classes of subjects in terms of a drift and a diffusion coefficients which
behave completely differently for the two classes of subjects, hence
potentially providing a novel diagnostic tool for distinguishing healthy
subjects from those with congestive heart failure, even at the early stages of
the disease development.Comment: 5 pages, two columns, 7 figs. to appear, The European Physical
Journal B (2006
The Magnetic Electron Ion Spectrometer (MagEIS) Instruments Aboard the Radiation Belt Storm Probes (RBSP) Spacecraft
This paper describes the Magnetic Electron Ion Spectrometer (MagEIS) instruments aboard the RBSP spacecraft from an instrumentation and engineering point of view. There are four magnetic spectrometers aboard each of the two spacecraft, one low-energy unit (20–240 keV), two medium-energy units (80–1200 keV), and a high-energy unit (800–4800 keV). The high unit also contains a proton telescope (55 keV–20 MeV). The magnetic spectrometers focus electrons within a selected energy pass band upon a focal plane of several silicon detectors where pulse-height analysis is used to determine if the energy of the incident electron is appropriate for the electron momentum selected by the magnet. Thus each event is a two-parameter analysis, an approach leading to a greatly reduced background. The physics of these instruments are described in detail followed by the engineering implementation. The data outputs are described, and examples of the calibration results and early flight data presented
Typicality vs. probability in trajectory-based formulations of quantum mechanics
Bohmian mechanics represents the universe as a set of paths with a
probability measure defined on it. The way in which a mathematical model of
this kind can explain the observed phenomena of the universe is examined in
general. It is shown that the explanation does not make use of the full
probability measure, but rather of a suitable set function deriving from it,
which defines relative typicality between single-time cylinder sets. Such a set
function can also be derived directly from the standard quantum formalism,
without the need of an underlying probability measure. The key concept for this
derivation is the {\it quantum typicality rule}, which can be considered as a
generalization of the Born rule. The result is a new formulation of quantum
mechanics, in which particles follow definite trajectories, but which is only
based on the standard formalism of quantum mechanics.Comment: 24 pages, no figures. To appear in Foundation of Physic
Infall and Outflow around the HH 212 protostellar system
HH 212 is a highly collimated jet discovered in H2 powered by a young Class 0
source, IRAS 05413-0104, in the L1630 cloud of Orion. We have mapped around it
in 1.33 mm continuum, 12CO (), 13CO (), C18O (), and SO
() emission at \arcs{2.5} resolution with the
Submillimeter Array. A dust core is seen in the continuum around the source. A
flattened envelope is seen in C18O around the source in the equator
perpendicular to the jet axis, with its inner part seen in 13CO. The structure
and kinematics of the envelope can be roughly reproduced by a simple edge-on
disk model with both infall and rotation. In this model, the density of the
disk is assumed to have a power-law index of or -2, as found in other
low-mass envelopes. The envelope seems dynamically infalling toward the source
with slow rotation because the kinematics is found to be roughly consistent
with a free fall toward the source plus a rotation of a constant specific
angular momentum. A 12CO outflow is seen surrounding the H2 jet, with a narrow
waist around the source. Jetlike structures are also seen in 12CO near the
source aligned with the H2 jet at high velocities. The morphological
relationship between the H2 jet and the 12CO outflow, and the kinematics of the
12CO outflow along the jet axis are both consistent with those seen in a
jet-driven bow shock model. SO emission is seen around the source and the H2
knotty shocks in the south, tracing shocked emission around them.Comment: 17 pages, 11 figures, Accepted by the Ap
- …
