173 research outputs found

    A Bi-Objective Approach for Optimizing the Installation of PATs in Systems of Transmission Mains

    Get PDF
    This paper proposes the bi‐objective optimization for the installation of pumps operating as turbines (PATs) in systems of transmission mains, which typically operate at steady flow conditions to cater to tanks in the service of water distribution networks. The methodology aims to find optimal solutions in the trade‐off between installation costs and generated hydropower, which are to be minimized and maximized, respectively. While the bi‐objective optimization is carried out by means of a genetic algorithm, an inner optimization sub‐algorithm provides for the regulation of PAT settings. The applications concerned a real Italian case study, made up of nine systems of transmission mains. The methodology proved able to thoroughly explore the trade‐off between the two objective functions, offering solutions able to recover hydropower up to 83 KW. In each system considered, the optimal solutions obtained were postprocessed in terms of long‐life net profit. Due to the large geodesic elevation variations available in the case study, this analysis showed that, in all systems, the optimal solution with the highest value of generated hydropower was the most profitable under usual economic scenarios, with payback periods always lower than 3 years

    Toll-Like Receptor 4 Modulates Small Intestine Neuromuscular Function through Nitrergic and Purinergic Pathways

    Get PDF
    Objective: Toll-like receptors (TLRs) play a pivotal role in the homeostatic microflora-host crosstalk. TLR4-mediated modulation of both motility and enteric neuronal survival has been reported mainly for colon with limited information on the role of TLR4 in tuning structural and functional integrity of enteric nervous system (ENS) and in controlling small bowel motility. Methods: Male TLR4 knockout (TLR4-/-, 9 \ub1 1 weeks old) and sex- and age-matched wild-type (WT) C57BL/6J mice were used for the experiments. Alterations in ENS morphology and neurochemical code were assessed by immunohistochemistry whereas neuromuscular function was evaluated by isometric mechanical activity of ileal preparations following receptor and non-receptor-mediated stimuli and by gastrointestinal transit. Results: The absence of TLR4 induced gliosis and reduced the total number of neurons, mainly nNOS+ neurons, in ileal myenteric plexus. Furthermore, a lower cholinergic excitatory response with an increased inhibitory neurotransmission was found together with a delayed gastrointestinal transit. These changes were dependent on increased ileal non-adrenergic non-cholinergic (NANC) relaxations mediated by a complex neuronal-glia signaling constituted by P2X7 and P2Y1 receptors, and NO produced by nNOS and iNOS. Conclusion: We provide novel evidence that TLR4 signaling is involved in the fine-tuning of P2 receptors controlling ileal contractility, ENS cell distribution, and inhibitory NANC neurotransmission via the combined action of NO and adenosine-5\u2032-triphosphate (ATP). For the first time, this study implicates TLR4 at regulating the crosstalk between glia and neurons in small intestine and helps to define its role in gastrointestinal motor abnormalities during dysbiosis

    Prognostic Impact of miR-224 and RAS Mutations in Medullary Thyroid Carcinoma

    Get PDF
    Little is known about the function of microRNA-224 (miR-224) in medullary thyroid cancer (MTC). This study investigated the role of miR-224 expression in MTC and correlated it with mutation status in sporadic MTCs. A consecutive series of 134 MTCs were considered. Patients had a sporadic form in 80% of cases (107/134). In this group, REarranged during transfection (RET) and rat sarcoma (RAS) mutation status were assessed by direct sequencing in the tumor tissues. Quantitative real-time polymerase chain reaction was used to quantify mature hsa-miR-224 in tumor tissue. RAS (10/107 cases, 9%) and RET (39/107 cases, 36%) mutations were mutually exclusive in sporadic cases. miR-224 expression was significantly downregulated in patients with the following: high calcitonin levels at diagnosis (p=0.03, r=−0.3); advanced stage (p=0.001); persistent disease (p=0.001); progressive disease (p=0.002); and disease-related death (p=0.0001). We found a significant positive correlation between miR-224 expression and somatic RAS mutations (p=0.007). Patients whose MTCs had a low miR-224 expression tended to have a shorter overall survival (log-rank test p=0.005). On multivariate analysis, miR-224 represented an independent prognostic marker. Our data indicate that miR-224 is upregulated in RAS-mutated MTCs and in patients with a better prognosis and could represent an independent prognostic marker in MTC patients

    The Field-Frequency Lock for Fast Field Cycling Magnetic Resonance: From NMR to MRI

    Get PDF
    Magnetic field stability plays a fundamental role in Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI) experiments, guaranteeing accuracy and reproducibility of results. While high levels of stabilization can be achieved for standard NMR techniques, this task becomes particularly challenging for Fast Field Cycling (FFC) NMR and MRI, where the main magnetic field is switched to higher or lower levels during the pulse sequence, and field stabilization must be guaranteed within a very short time after switching. Recent works have addressed the problem with rigorous tools from control system theory, proposing a model based approach for the synthesis of magnetic field controllers for FFC-NMR. While an experimental proof of concept has underlined the correctness of the approach for a complete FFC-NMR setup, the application of the novel, model based Field-Frequency Lock (FFL) system to a FFC-MRI scanner requires proper handling of field encoding gradients. Furthermore, the proof of concept work has also stressed how further advances in the hardware and firmware could improve the overall performances of the magnetic field control loop. The main aim of this perspective paper is then discussing the key challenges that arise in the development of the FFL system suitable for a complete MRI scanner, as well as defining possible research directions by means of preliminary, simulated experiments, with the final goal of favoring the development of a novel, model based FFL system for FFC-MRI

    Frequency and significance of Ras, Tert promoter, and Braf mutations in cytologically indeterminate thyroid nodules: A monocentric case series at a tertiary-level Endocrinology unit

    Get PDF
    PurposeThe management of thyroid nodules of indeterminate cytology is controversial. Our study aimed to establish the frequency and significance of H-,K-,N-RAS, TERT promoter, and BRAF gene mutations in thyroid nodes of indeterminate cytology and to assess their potential usefulness in clinical practice.MethodsH-,K-,N-RAS, TERT promoter and BRAF gene mutations were examined in a series of 199 consecutive nodes of indeterminate cytology referred for surgical excision.Results69/199 (35%) were malignant on histopathological review. RAS mutations were detected in 36/199 (18%), and 19/36 cases (53%) were malignant on histological diagnosis. TERT promoter mutations were detected in 7/199 (4%) nodules, which were all malignant lesions. BRAF mutations were detected in 15/199 (8%), and a BRAF K601E mutation was identified in 2 follicular adenomas and 1 noninvasive follicular thyroid neoplasm with papillary-like nuclear features. Altogether, this panel was able to identify 48% of the malignant lesions, achieving a specificity, positive predictive value, and negative predictive value for malignancy of 85, 62, and 75%, respectively.ConclusionThe residual malignancy risk in mutation-negative nodes is 25%. These nodes still need to be resected, but mutation analysis could help to orient the appropriate surgical strategy

    Towards a Model-Based Field-Frequency Lock for Fast-Field Cycling NMR

    Get PDF
    Fast-field cycling nuclear magnetic resonance (FFC NMR) relaxometry allows to investigate molecular dynamics of complex materials. FFC relaxometry experiments require the magnetic field to reach different values in few milliseconds and field oscillations to stay within few ppms during signal acquisition. Such specifications require the introduction of a novel field-frequency lock (FFL) system. In fact, control schemes based only on current feedback may not guarantee field stability, while standard FFLs are designed to handle very slow field fluctuations, such as thermal derives, and may be ineffective in rejecting faster ones. The aim of this work is then to propose a methodology for the synthesis of a regulator that guarantees rejection of field fluctuations and short settling time. Experimental trials are performed for both model validation and evaluation of the closed-loop performances. Relaxometry experiments are performed to verify the improvement obtained with the new FFL. The results highlight the reliability of the model and the effectiveness of the overall approach

    A constitutive active MAPK/ERK pathway due to BRAFV600E positively regulates AHR pathway in PTC

    Get PDF
    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor mediating the toxicity and tumor-promoting properties of dioxin. AHR has been reported to be overexpressed and constitutively active in a variety of solid tumors, but few data are currently available concerning its role in thyroid cancer. In this study we quantitatively explored a series of 51 paired-normal and papillary thyroid carcinoma (PTC) tissues for AHR-related genes. We identified an increased AHR expression/activity in PTC, independently from its nuclear dimerization partner and repressor but strictly related to a constitutive active MAPK/ERK pathway. The AHR up-regulation followed by an increased expression of AHR target genes was confirmed by a meta-analysis of published microarray data, suggesting a ligand-independent active AHR pathway in PTC. In-vitro studies using a PTC-derived cell line (BCPAP) and HEK293 cells showed that BRAF(V600E) may directly modulate AHR localization, induce AHR expression and activity in an exogenous ligand-independent manner. The AHR pathway might represent a potential novel therapeutic target for PTC in the clinical practice

    Programmed cell death 4 (PDCD4) as a novel prognostic marker for papillary thyroid carcinoma

    Get PDF
    Background: The primary goal of papillary thyroid cancer (PTC) management was to stratify patients at pre- and post-surgical level to identify the small proportion of cases with potentially aggressive disease. Purpose: The aim of our study is to evaluate the possible role of programmed cell death 4 (PDCD4) and BRAF status as prognostic markers in PTC. Patients and methods: We investigate programmed cell death 4 (PDCD4) immunohistochemical expression in 125 consecutive PTCs with median follow-up of 75.3 months (range, 15\u201398 months) to verify the possible correlation between BRAF status and correlate the classical clinicopathological prognostic factors and PTC outcome with PDCD4 expression. To further support the data, miR-21 expression was tested (by quantitative real-time PCR and in situ hybridization) in a different series of 30 cases (15 PTCs BRAFwt and 15 PTCs BRAFV600E). Moreover, we validated our results using TGCA thyroid carcinoma dataset. Results: We found that 59.8% of the patients showed low-grade PDCD4 nuclear expression and low-grade expression correlated with BRAF V600E. Compared with BRAF 15 wild-type tissue samples, a significant miR-21 up-regulation was associated with BRAF V600E mutations. Lowgrade PDCD4 resulted, and was associated with aggressive histological variants, higher cancer size, extra-thyroidal extension, multifocality, lymph-node metastasis and lymph nodal ratio at the diagnosis. Concerning the outcome, the low-grade PDCD4 expression correlated at univariate and multivariate analysis, with lower levels of recurrence-free survival rate (RFS) and with poor outcome. Moreover, there was significant association between BRAF V600E patients with PDCD4 nuclear loss and lower RFS, whilet here was significant association between BRAF wild-type patients with PDCD4 nuclear expression and better outcome. Conclusion: These results showed that PDCD4 could predict PTC outcome and that the sum of PDCD4 and BRAF alterations increases the prognostic power of BRAF mutation alone

    PROGNOSTIC SIGNIFICANCE OF TERT PROMOTER AND BRAF MUTATIONS IN TIR-4 AND TIR-5 THYROID CYTOLOGY

    Get PDF
    Objective: Follicular-derived thyroid cancers generally have a good prognosis, but in a minority of cases, they have an aggressive behavior and develop distant metastases, with an increase in the associated mortality. None of the prognostic markers currently available prior to surgery can identify such cases. Methods: TERT promoter and BRAF gene mutations were examined in a series of 436 consecutive TIR-4 and TIR-5 nodes referred for surgery. Follow-up (median: 59 months, range: 7-293 months) was available for 384/423 patients with malignant nodes. Results: TERT promoter and BRAF mutations were detected in 20/436 (4.6%) and 257/434 thyroid nodules (59.2%), respectively. At the end of the follow-up, 318/384 patients (82.8%) had an excellent outcome, 48/384 (12.5%) had indeterminate response or biochemical persistence, 18/384 (4.7%) had a structural persistence or died from thyroid cancer. TERT promoter mutations correlated with older age (P < 0.0001), larger tumor size (P = 0.0002), oxyntic and aggressive PTC variants (P = 0.01), higher tumor stages (P < 0.0001), distant metastases (<0.0001) and disease outcome (P < 0.0001). At multivariate analysis, TERT promoter mutation was not an independent predictor of disease outcome. TERT promoter mutation- (OR: 40.58; 95% CI: 3.06-539.04), and N1b lymph node metastases (OR: 40.16, 95% CI: 3.48-463.04) were independent predictors of distant metastases. BRAF mutation did not predict the outcome, and it correlated with a lower incidence of distant metastases (P = 0.0201). Conclusions: TERT promoter mutation proved an independent predictor of distant metastases, giving clinicians the chance to identify many of the patients who warranted more aggressive initial treatment and closer follow-up
    • 

    corecore