102 research outputs found

    Benchmark calculations for elastic fermion-dimer scattering

    Get PDF
    We present continuum and lattice calculations for elastic scattering between a fermion and a bound dimer in the shallow binding limit. For the continuum calculation we use the Skorniakov-Ter-Martirosian (STM) integral equation to determine the scattering length and effective range parameter to high precision. For the lattice calculation we use the finite-volume method of L\"uscher. We take into account topological finite-volume corrections to the dimer binding energy which depend on the momentum of the dimer. After subtracting these effects, we find from the lattice calculation kappa a_fd = 1.174(9) and kappa r_fd = -0.029(13). These results agree well with the continuum values kappa a_fd = 1.17907(1) and kappa r_fd = -0.0383(3) obtained from the STM equation. We discuss applications to cold atomic Fermi gases, deuteron-neutron scattering in the spin-quartet channel, and lattice calculations of scattering for nuclei and hadronic molecules at finite volume.Comment: 16 pages, 5 figure

    Abscisic Acid Levels and Seed Dormancy

    Full text link

    Distinct Mechanisms for Induction and Tolerance Regulate the Immediate Early Genes Encoding Interleukin 1β and Tumor Necrosis Factor α

    Get PDF
    Interleukin-1β and Tumor Necrosis Factor α play related, but distinct, roles in immunity and disease. Our study revealed major mechanistic distinctions in the Toll-like receptor (TLR) signaling-dependent induction for the rapidly expressed genes (IL1B and TNF) coding for these two cytokines. Prior to induction, TNF exhibited pre-bound TATA Binding Protein (TBP) and paused RNA Polymerase II (Pol II), hallmarks of poised immediate-early (IE) genes. In contrast, unstimulated IL1B displayed very low levels of both TBP and paused Pol II, requiring the lineage-specific Spi-1/PU.1 (Spi1) transcription factor as an anchor for induction-dependent interaction with two TLR-activated transcription factors, C/EBPβ and NF-κB. Activation and DNA binding of these two pre-expressed factors resulted in de novo recruitment of TBP and Pol II to IL1B in concert with a permissive state for elongation mediated by the recruitment of elongation factor P-TEFb. This Spi1-dependent mechanism for IL1B transcription, which is unique for a rapidly-induced/poised IE gene, was more dependent upon P-TEFb than was the case for the TNF gene. Furthermore, the dependence on phosphoinositide 3-kinase for P-TEFb recruitment to IL1B paralleled a greater sensitivity to the metabolic state of the cell and a lower sensitivity to the phenomenon of endotoxin tolerance than was evident for TNF. Such differences in induction mechanisms argue against the prevailing paradigm that all IE genes possess paused Pol II and may further delineate the specific roles played by each of these rapidly expressed immune modulators. © 2013 Adamik et al

    Advanced Computational Biology Methods Identify Molecular Switches for Malignancy in an EGF Mouse Model of Liver Cancer

    Get PDF
    The molecular causes by which the epidermal growth factor receptor tyrosine kinase induces malignant transformation are largely unknown. To better understand EGFs' transforming capacity whole genome scans were applied to a transgenic mouse model of liver cancer and subjected to advanced methods of computational analysis to construct de novo gene regulatory networks based on a combination of sequence analysis and entrained graph-topological algorithms. Here we identified transcription factors, processes, key nodes and molecules to connect as yet unknown interacting partners at the level of protein-DNA interaction. Many of those could be confirmed by electromobility band shift assay at recognition sites of gene specific promoters and by western blotting of nuclear proteins. A novel cellular regulatory circuitry could therefore be proposed that connects cell cycle regulated genes with components of the EGF signaling pathway. Promoter analysis of differentially expressed genes suggested the majority of regulated transcription factors to display specificity to either the pre-tumor or the tumor state. Subsequent search for signal transduction key nodes upstream of the identified transcription factors and their targets suggested the insulin-like growth factor pathway to render the tumor cells independent of EGF receptor activity. Notably, expression of IGF2 in addition to many components of this pathway was highly upregulated in tumors. Together, we propose a switch in autocrine signaling to foster tumor growth that was initially triggered by EGF and demonstrate the knowledge gain form promoter analysis combined with upstream key node identification

    Roles of Coactivators in Hypoxic Induction of the Erythropoietin Gene

    Get PDF
    Hypoxia-inducible expression of the erythropoietin (EPO) gene is mediated principally by hypoxia-inducible factor 2alpha (HIF-2alpha) in Hep3B cells under physiologic conditions. How/whether p300/CBP and the members of p160 coactivator family potentiate hypoxic induction of endogenous EPO and other HIF-2alpha and hypoxia-inducible factor 1alpha (HIF-1alpha) target genes remains unclear.We demonstrate, using chromatin immunoprecipitation (ChIP) analysis, that the histone acetyl transferase (HAT) coactivators p300, SRC-1 and SRC-3 are recruited to the 3' enhancer of the EPO gene upon hypoxic stimulation, and that each associates with the enhancer in a periodic fashion. Hypoxia induced acetylation of the EPO gene 5' promoter at histone 4 and lysine 23 of histone 3. Knocking down SRC-3, but not SRC-1 or SRC-2, using short interfering RNAs (siRNAs), reduced EPO transcriptional activity. Knocking down p300 resulted in dramatic down-regulation of hypoxic stimulation of EPO gene transcription, negated recruitment of RNA polymerase II to the gene's promoter, and eliminated hypoxia-stimulated acetylation at the promoter and recruitments of SRC-1 and SRC-3 to the enhancer. The inhibitory effects of knocking down p300 and the chromatin remodeling coactivator, Brm/Brg-1, on EPO transcription were additive, suggesting that p300 and Brm/Brg-1 act independently. p300 was also required for hypoxia induced transcription of the HIF-1alpha target gene, VEGF, but was dispensable for induction of two other HIF-1alpha target genes, PGK and LDHA. Knocking down CBP, a homolog of p300, augmented hypoxic induction of VEGF, LDHA and PGK. Different HIF target genes also exhibited different requirements for members of the p160 coactivator family.p300 plays a central coactivator role in hypoxic induction of EPO. The coactivators exhibit different specificities for different HIF target genes and each can behave differently in transcriptional regulation of different target genes mediated by the same transcription factor

    Morphological and Chemical Mechanisms of Elongated Mineral Particle Toxicities

    Get PDF
    Much of our understanding regarding the mechanisms for induction of disease following inhalation of respirable elongated mineral particles (REMP) is based on studies involving the biological effects of asbestos fibers. The factors governing the disease potential of an exposure include duration and frequency of exposures; tissue-specific dose over time; impacts on dose persistence from in vivo REMP dissolution, comminution, and clearance; individual susceptibility; and the mineral type and surface characteristics. The mechanisms associated with asbestos particle toxicity involve two facets for each particle's contribution: (1) the physical features of the inhaled REMP, which include width, length, aspect ratio, and effective surface area available for cell contact; and (2) the surface chemical composition and reactivity of the individual fiber/elongated particle. Studies in cell-free systems and with cultured cells suggest an important way in which REMP from asbestos damage cellular molecules or influence cellular processes. This may involve an unfortunate combination of the ability of REMP to chemically generate potentially damaging reactive oxygen species, through surface iron, and the interaction of the unique surfaces with cell membranes to trigger membrane receptor activation. Together these events appear to lead to a cascade of cellular events, including the production of damaging reactive nitrogen species, which may contribute to the disease process. Thus, there is a need to be more cognizant of the potential impact that the total surface area of REMP contributes to the generation of events resulting in pathological changes in biological systems. The information presented has applicability to inhaled dusts, in general, and specifically to respirable elongated mineral particles
    corecore