175 research outputs found
Radical SAM-mediated methylation reactions.
A subset of enzymes that belong to the radical S-adenosylmethionine (SAM) superfamily is able to catalyze methylation reactions. Substrates of these enzymes are distinct from the nucleophilic substrates that undergo methylation by a polar mechanism. Recently, activities of several radical SAM methylating enzymes have been reconstituted in vitro and their mechanisms of catalysis investigated. The RNA modifying enzymes RlmN and Cfr catalyze methylation via a methyl synthase mechanism. These enzymes use SAM in two distinct roles: as a source of a methyl group transferred to a conserved cysteine and as a source of 5'-deoxyadenosyl radical (5'-dA). Hydrogen atom abstraction by this species generates a thiomethylene radical which adds into the RNA substrate, forming an enzyme-substrate covalent adduct. In another recent study, methylation of the indole moiety of tryptophan by the radical SAM and cobalamin-binding domain enzyme TsrM has been reconstituted. Methylcobalamin serves as an intermediate methyl donor in TsrM, and is proposed to transfer the methyl group as a methyl radical. Interestingly, despite the presence of the radical SAM motif, no reductive cleavage of SAM has been observed in this methylation. These important reconstitutions set the stage for further studies on mechanisms of radical methylation
Recommended from our members
Antibiotic resistance evolved via inactivation of a ribosomal RNA methylating enzyme.
Modifications of the bacterial ribosome regulate the function of the ribosome and modulate its susceptibility to antibiotics. By modifying a highly conserved adenosine A2503 in 23S rRNA, methylating enzyme Cfr confers resistance to a range of ribosome-targeting antibiotics. The same adenosine is also methylated by RlmN, an enzyme widely distributed among bacteria. While RlmN modifies C2, Cfr modifies the C8 position of A2503. Shared nucleotide substrate and phylogenetic relationship between RlmN and Cfr prompted us to investigate evolutionary origin of antibiotic resistance in this enzyme family. Using directed evolution of RlmN under antibiotic selection, we obtained RlmN variants that mediate low-level resistance. Surprisingly, these variants confer resistance not through the Cfr-like C8 methylation, but via inhibition of the endogenous RlmN C2 methylation of A2503. Detection of RlmN inactivating mutations in clinical resistance isolates suggests that the mechanism used by the in vitro evolved variants is also relevant in a clinical setting. Additionally, as indicated by a phylogenetic analysis, it appears that Cfr did not diverge from the RlmN family but from another distinct family of predicted radical SAM methylating enzymes whose function remains unknown
Assessment of the nucleotide modifications in the high-resolution cryo-electron microscopy structure of the Escherichia coli 50S subunit.
Post-transcriptional ribosomal RNA (rRNA) modifications are present in all organisms, but their exact functional roles and positions are yet to be fully characterized. Modified nucleotides have been implicated in the stabilization of RNA structure and regulation of ribosome biogenesis and protein synthesis. In some instances, rRNA modifications can confer antibiotic resistance. High-resolution ribosome structures are thus necessary for precise determination of modified nucleotides' positions, a task that has previously been accomplished by X-ray crystallography. Here, we present a cryo-electron microscopy (cryo-EM) structure of the Escherichia coli 50S subunit at an average resolution of 2.2 Ć
as an additional approach for mapping modification sites. Our structure confirms known modifications present in 23S rRNA and additionally allows for localization of Mg2+ ions and their coordinated water molecules. Using our cryo-EM structure as a testbed, we developed a program for assessment of cryo-EM map quality. This program can be easily used on any RNA-containing cryo-EM structure, and an associated Coot plugin allows for visualization of validated modifications, making it highly accessible
Virtual Screening of Histone Lysine Demethylase(JMJD2) identifies new inhibitors
The JmjC domain-containing proteins are hydroxylases that confer posttranslational modifications on histone tails, by removing methylation marks on methylated lysine residues. This serves to either promote or repress gene transcription. The JMJD2A-D family members include the enzyme Jumonji domain 2C (JMJD2C), which specifically demethylates di- and trimethylated histone H3 at Lys 9 or Lys 36.[1] Dysregulation of JMJD2C has been implicated in prostate, colonic, and breast cancer as the demethylase can modify the expression levels of oncogenes.[2] The goal of the present study was to identify potent and selective small-molecule inhibitors of JMJD2C, to be used as chemical biology tools to further investigate the role of JMJD2C in cell proliferation and survival. Using high-resolution crystal structures of the JMJD2 subfamily members as templates, we have performed a small molecule virtual docking screen. From the ~3 million molecules that were docked, this experiment identified 21 compounds as possible leads. These compounds were tested against JMJD2C in enzymatic assays and here we report an overall hit rate of 76%, with 8 compounds demonstrating an IC50 of 176Ī¼M to 1.18Ī¼M. A molecule containing a salicylate core was selected as a candidate for optimization and thus far we have completed several rounds of iterative target-specific compound docking, hybrid molecule design, compound synthesis and in vitro characterization. Notably, our method demonstrated a substantial increase in potency when we linked two docked fragments together and further derivatized this new scaffold, through which we have successfully derived a 65nM inhibitor of JMJD2C. A compound representing the inhibitor scaffold has been co-crystallized with JMJD2A to a resolution of 2.4 Ć
. In the crystal structure each asymmetric unit contains two JMJD2A monomers, each bound to a single inhibitor molecule. This complex-structure superposes well with the docked pose for the hybrid series of compounds. We are now focusing our efforts on identifying an inhibitor that is selective for the JMJD2 family over other JmjC domain-containing proteins
Recommended from our members
Covalent intermediate in the catalytic mechanism of the radical S-adenosyl-L-methionine methyl synthase RlmN trapped by mutagenesis.
The posttranscriptional modification of ribosomal RNA (rRNA) modulates ribosomal function and confers resistance to antibiotics targeted to the ribosome. The radical S-adenosyl-L-methionine (SAM) methyl synthases, RlmN and Cfr, both methylate A2503 within the peptidyl transferase center of prokaryotic ribosomes, yielding 2-methyl- and 8-methyl-adenosine, respectively. The C2 and C8 positions of adenosine are unusual methylation substrates due to their electrophilicity. To accomplish this reaction, RlmN and Cfr use a shared radical-mediated mechanism. In addition to the radical SAM CX(3)CX(2)C motif, both RlmN and Cfr contain two conserved cysteine residues required for in vivo function, putatively to form (cysteine 355 in RlmN) and resolve (cysteine 118 in RlmN) a covalent intermediate needed to achieve this challenging transformation. Currently, there is no direct evidence for this proposed covalent intermediate. We have further investigated the roles of these conserved cysteines in the mechanism of RlmN. Cysteine 118 mutants of RlmN are unable to resolve the covalent intermediate, either in vivo or in vitro, enabling us to isolate and characterize this intermediate. Additionally, tandem mass spectrometric analyses of mutant RlmN reveal a methylene-linked adenosine modification at cysteine 355. Employing deuterium-labeled SAM and RNA substrates in vitro has allowed us to further clarify the mechanism of formation of this intermediate. Together, these experiments provide compelling evidence for the formation of a covalent intermediate species between RlmN and its rRNA substrate and well as the roles of the conserved cysteine residues in catalysis
Ī²āMannosylation through OāAlkylation of Anomeric Cesium Alkoxides: Mechanistic Studies and Synthesis of the Hexasaccharide Core of Complex Fucosylated NāLinked Glycans
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154903/1/ejoc202000313.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154903/2/ejoc202000313-sup-0001-SupMat.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154903/3/ejoc202000313_am.pd
Catalytic Modification of Dehydroalanine in Peptides and Proteins by Palladium-Mediated Cross-Coupling
Dehydroalanine (Dha) is a remarkably versatile non-canonical amino acid often found in antimicrobial peptides. Here we present the catalytic modification of Dha via a palladium mediated cross coupling reaction. Using Pd(EDTA)(OAc)2 as water soluble catalyst, a variety of arylboronic acids was coupled to the dehydrated residues in proteins and peptides such as nisin. The cross coupling reaction yields both the Heck product, in which the sp2-hybridisation of the Ī±-carbon is retained, as well as the conjugated addition product. The reaction can be performed under mild aqueous conditions, which makes this method an attractive addition to the palette of bio-orthogonal catalytic methods
A Novel Enzymatic Rearrangement
Human Fe(II)-Ī±-ketoglutarate-dependent dioxygenases are a diverse enzyme family involved in a number of biological processes, from collagen biosynthesis to transcription. In this issue, Leung etĀ al. (2010) add a new reaction to their ever-expanding catalytic repertoire
- ā¦