10,399 research outputs found

    Review of the ELI-NP-GBS low level rf and synchronization systems

    Get PDF
    The Gamma Beam System (GBS) of ELI-NP is a linac based gamma-source in construction at Magurele (RO) by the European consortium EuroGammaS led by INFN. Photons with tunable energy and with intensity and brilliance well beyond the state of the art will be produced by Compton back-scattering between a high quality electron beam (up to 740 MeV) and a 515 nm intense laser pulse. Production of very intense photon flux with narrow bandwidth requires multi-bunch operation at 100 Hz repetition rate. A total of 13 klystrons, 3 S-band (2856 MHz) and 10 C-band (5712 MHz) will power a total of 14 Travelling Wave accelerating sections (2 S-band and 12 C-band) plus 3 S-band Standing Wave cavities (a 1.6 cell RF gun and 2 RF deflectors). Each klystron is individually driven by a temperature stabilized LLRF module, for a maximum flexibility in terms of accelerating gradient, arbitrary pulse shaping (e.g. to compensate beam loading effects in multi-bunch regime) and compensation of long-term thermal drifts. In this paper, the whole LLRF system architecture and bench test results, the RF reference generation and distribution together with an overview of the synchronization system will be described

    Smooth-rough asymmetric PLGA structure made of dip coating membrane and electrospun nanofibrous scaffolds meant to be used for guided tissue regeneration of periodontium

    Get PDF
    A surgical procedure for the repair of damaged periodontal tissue is Guided Tissue Regeneration (GTR), which involves the use of a barrier membrane to prevent soft tissue ingrowth and create a space for slow regeneration of periodontium and bone. GTR membrane should have pores able to facilitate the diffusion of fluids, oxygen, nutrients, and bioactive substances for cell growth, but also be impermeable to epithelial cells or gingival fibroblasts, which could overpopulate the defect space and inhibit infiltration and activity of bone-forming cells. In this paper, a bilayer PLGA membrane was realized by coupling the dip coating and electrospinning techniques. The rough layer of the double-sided structure was electrospun on the previously prepared smooth dip-coated membrane. A rotating drum collector at two rotating speeds was used to generate different fibers orientation. The bilayer membrane with different superimposed surfaces was successfully fabricated and characterized from a morphological, physicochemical, and the mechanical point of view. Performed analyses revealed that the membrane possesses suitable properties, especially from mechanical point of view, for its possible use as a scaffold for the GTR of periodontum. A high fiber alignment and improved mechanical properties with respect to available GTR membranes characterized the product resulting from this study

    Ultraviolet writing of channel waveguides in proton-exchanged LiNbO<sub>3</sub>

    No full text
    We report on a direct ultraviolet (UV) writing method for the fabrication of channel waveguides at 1.55 µm in LiNbO3 through UV irradiation of surface and buried planar waveguides made by annealed proton exchange and reverse proton exchange. A systematic study of the guidance properties as a function of the UV writing conditions is presented

    Anticancer and anti-inflammatory effects of tomentosin: Cellular and molecular mechanisms

    Get PDF
    Tomentosin is a natural compound known for its presence in some medicinal plants of the Asteraceae family such as Inula viscosa. Recent studies have highlighted its anticancer and anti-inflammatory properties. Its anticancer mechanisms are unique and act at different levels ranging from cellular organization to molecular transcriptional factors and epigenetic modifications. Tomentosin’s possession of the modulatory effect on telomerase expression on tumor cell lines has captured the interest of researchers and spurred a more robust study on its anticancer effect. Since inflammation has a close link with cancer disease, this natural compound appears to be a potential cancer-fighting drug. Indeed, its recently demonstrated anti-inflammatory action can be considered as a starting point for its evaluation as an anticancer chemo-preventive agent

    Dissemination of the Transmissible Quinolone-Resistance Gene qnrS1 by IncX Plasmids in Nigeria

    Get PDF
    The plasmid-encoded quinolone resistance gene qnrS1 was recently found to be commonly associated with ciprofloxacin resistance in Nigeria. We mapped the qnrS1 gene from an Escherichia coli isolate obtained in Nigeria to a 43.5 Kb IncX2 plasmid. The plasmid, pEBG1, was sufficient to confer ciprofloxacin non-susceptibility, as well as tetracycline and trimethoprim resistance, on E. coli K-12. Deletion analysis confirmed that qnrS1 accounted for all the ciprofloxacin non-suceptibility conferred by pEBG1 and tetracycline and trimethoprim resistance could be attributed to tetAR and dfrA14 genes respectively. While it contained a complete IncX conjugation system, pEBG1 was not self-transmissible likely due to an IS3 element inserted between the pilX5 and pilX6 genes. The plasmid was however efficiently mobilizable. pEBG1 was most similar to another qnrS1-bearing IncX2 plasmid from Nigeria, but both plasmids acquired qnrS1 independently and differ in their content of other resistance genes. Screening qnrS1-positive isolates from other individuals in Nigeria revealed that they carried neither pEBG1 nor pNGX2-QnrS1 but that IncX plasmids were prevalent. This study demonstrates that the IncX backbone is a flexible platform that has contributed to qnrS1 dissemination in Nigeria

    Characterization of structural changes in modern and archaeological burnt bone: Implications for differential preservation bias

    Get PDF
    Structural and thermodynamic factors which may influence burnt bone survivorship in archaeological contexts have not been fully described. A highly controlled experimental reference collection of fresh, modern bone burned in temperature increments 100–1200˚C is presented here to document the changes to bone tissue relevant to preservation using Fourier transform infrared spectroscopy and X-ray diffraction. Specific parameters investigated here include the rate of organic loss, amount of bone mineral recrystallization, and average growth in bone mineral crystallite size. An archaeological faunal assemblage ca. 30,000 years ago from Tolbor-17 (Mongolia) is additionally considered to confirm visibility of changes seen in the modern reference sample and to relate structural changes to commonly used zooarchaeological scales of burning intensity. The timing of our results indicates that the loss of organic components in both modern and archaeological bone burnt to temperatures up to 700˚C are not accompanied by growth changes in the average crystallite size of bone mineral bioapatite, leaving the small and reactive bioapatite crystals of charred and carbonized bone exposed to diagenetic agents in depositional contexts. For bones burnt to temperatures of 700˚C and above, two major increases in average crystallite size are noted which effectively decrease the available surface area of bone mineral crystals, decreasing reactivity and offering greater thermodynamic stability despite the mechanical fragility of calcined bone. We discuss the archaeological implications of these observations within the context of Tolbor-17 and the challenges of identifying anthropogenic fire

    Dual role for DOCK7 in tangential migration of interneuron precursors in the postnatal forebrain

    Get PDF
    Throughout life, stem cells in the ventricular-subventricular zone generate neuroblasts that migrate via the rostral migratory stream (RMS) to the olfactory bulb, where they differentiate into local interneurons. Although progress has been made toward identifying extracellular factors that guide the migration of these cells, little is known about the intracellular mechanisms that govern the dynamic reshaping of the neuroblasts' morphology required for their migration along the RMS. In this study, we identify DOCK7, a member of the DOCK180-family, as a molecule essential for tangential neuroblast migration in the postnatal mouse forebrain. DOCK7 regulates the migration of these cells by controlling both leading process (LP) extension and somal translocation via distinct pathways. It controls LP stability/growth via a Rac-dependent pathway, likely by modulating microtubule networks while also regulating F-actin remodeling at the cell rear to promote somal translocation via a previously unrecognized myosin phosphatase-RhoA-interacting protein-dependent pathway. The coordinated action of both pathways is required to ensure efficient neuroblast migration along the RMS

    On Coupling FCA and MDL in Pattern Mining

    Get PDF
    International audiencePattern Mining is a well-studied field in Data Mining and Machine Learning. The modern methods are based on dynamically updating models, among which MDL-based ones ensure high-quality pattern sets. Formal concepts also characterize patterns in a condensed form. In this paper we study MDL-based algorithm called Krimp in FCA settings and propose a modified version that benefits from FCA and relies on probabilistic assumptions that underlie MDL. We provide an experimental proof that the proposed approach improves quality of pattern sets generated by Krimp
    • …
    corecore