140 research outputs found

    Excitability and synaptic transmission in the enteric nervous system: Does diet play a role?

    Full text link
    © Springer International Publishing Switzerland 2016. Changes in diet are a challenge to the gastrointestinal tract which needs to alter its processing mechanisms to continue to process nutrients and maintain health. In particular, the enteric nervous system (ENS) needs to adapt its motor and secretory programs to deal with changes in nutrient type and load in order to optimise nutrient absorption. The nerve circuits in the gut are complex, and the numbers and types of neurons make recordings of specific cell types difficult, time-consuming, and prone to sampling errors. Nonetheless, traditional research methods like intracellular electrophysiological approaches have provided the basis for our understanding of the ENS circuitry. In particular, animal models of intestinal inflammation have shown us that we can document changes to neuronal excitability and synaptic transmission. Recent studies examining diet-induced changes to ENS programming have opted to use fast imaging techniques to reveal changes in neuron function. Advances in imaging techniques using voltage- or calcium-sensitive dyes to record neuronal activity promise to overcome many limitations inherent to electrophysiological approaches. Imaging techniques allow access to a wide range of ENS phenotypes and to the changes they undergo during dietary challenges. These sorts of studies have shown that dietary variation or obesity can change how the ENS processes information-in effect reprogramming the ENS. In this review, the data gathered from intracellular recordings will be compared with measurements made using imaging techniques in an effort to determine if the lessons learnt from inflammatory changes are relevant to the understanding of diet-induced reprogramming

    A case report on a patient suffering from recurrent vomiting episodes, whose condition improved markedly during pregnancy and breast feeding

    Get PDF
    BACKGROUND: The normal physiology of the gastrointestinal tract has been only cursorily examined. Consequently, the pathophysiology of disturbances of the gastrointestinal functions is poorly known. Recurrent vomiting is one of many functional conditions for which it is difficult to find an explanation and to treat. In the following a case is described of a patient presenting with recurrent vomiting episodes, whose condition improved spontaneously during pregnancy and breast feeding. CASE PRESENTATION: A woman with recurrent vomiting episodes over several years was examined by esophagogastroduodenoscopy. This showed a non-peristaltic ventricle. Treatment with the procinetic drug cisapride (Prepulsid(®)) improved the peristalsis and reduced the symptoms. During pregnancy and breast feeding, she was free of symptoms, in spite of having discontinued her medication with cisapride (Prepulsid(®)). CONCLUSION: The fact that the patient improved during pregnancy and breast feeding, would seem to indicate the involvement of factors in the physiology of pregnancy and breast feeding that are of importance for gastric motility. This deserves further investigation

    Increased cholinergic contractions of jejunal smooth muscle caused by a high cholesterol diet are prevented by the 5-HT(4 )agonist – tegaserod

    Get PDF
    BACKGROUND: Excess cholesterol in bile and in blood is a major risk factor for the respective development of gallbladder disease and atherosclerosis. This lipid in excess negatively impacts the functioning of other smooth muscles, including the intestine. Serotonin is an important mediator of the contractile responses of the small intestine. Drugs targeting the serotonin receptor are used as prokinetic agents to manage intestinal motor disorders, in particular irritable bowel syndrome. Thus, tegaserod, acting on 5-HT(4 )receptor, ideally should obviate detrimental effects of excessive cholesterol on gastrointestinal smooth muscle. In this study we examined the effect of tegaserod on cholesterol-induced changes in the contractile responses of intestinal smooth muscle. METHODS: The effects of a high cholesterol (1%) diet on the in vitro contractile responses of jejunal longitudinal smooth muscle from Richardson ground squirrels to the cholinergic agonist carbachol were examined in the presence or absence of tetrodrodotoxin (TTX). Two groups of animals, fed either low (0.03%) or high cholesterol rat chow diet, were further divided into two subgroups and treated for 28 days with either vehicle or tegaserod. RESULTS: The high cholesterol diet increased, by nearly 2-fold, contractions of the jejunal longitudinal smooth muscle elicited by carbachol. These cholinergic contractions were mediated by muscarinic receptors since they were blocked by scopolamine, a muscarinic receptor antagonist, but not by the nicotinic receptor antagonist, hexamethonium. Tegaserod treatment, which did not affect cholinergic contractions of tissues from low cholesterol fed animals, abrogated the increase caused by the high cholesterol diet. With low cholesterol diet TTX enhanced carbachol-evoked contractions, whereas this action potential blocker did not affect the augmented cholinergic contractions seen with tissues from animals on the high cholesterol diet. Tegaserod-treatment removed the effects of a high cholesterol diet on neuronal muscarinic receptors, as the potentiating effect of TTX on carbachol-elicited contractions was maintained in these animals. CONCLUSION: A high cholesterol diet causes significant changes to cholinergic neurotransmission in the enteric nerves of the jejunum. The mechanisms by which these effects of cholesterol are reversed by tegaserod are unknown, but relate to removal of an inhibitory effect of cholesterol on enteric nerves

    Characterization of 4-HNE Modified L-FABP Reveals Alterations in Structural and Functional Dynamics

    Get PDF
    4-Hydroxynonenal (4-HNE) is a reactive α,β-unsaturated aldehyde produced during oxidative stress and subsequent lipid peroxidation of polyunsaturated fatty acids. The reactivity of 4-HNE towards DNA and nucleophilic amino acids has been well established. In this report, using proteomic approaches, liver fatty acid-binding protein (L-FABP) is identified as a target for modification by 4-HNE. This lipid binding protein mediates the uptake and trafficking of hydrophobic ligands throughout cellular compartments. Ethanol caused a significant decrease in L-FABP protein (P<0.001) and mRNA (P<0.05), as well as increased poly-ubiquitinated L-FABP (P<0.001). Sites of 4-HNE adduction on mouse recombinant L-FABP were mapped using MALDI-TOF/TOF mass spectrometry on apo (Lys57 and Cys69) and holo (Lys6, Lys31, His43, Lys46, Lys57 and Cys69) L-FABP. The impact of 4-HNE adduction was found to occur in a concentration-dependent manner; affinity for the fluorescent ligand, anilinonaphthalene-8-sulfonic acid, was reduced from 0.347 µM to Kd1 = 0.395 µM and Kd2 = 34.20 µM. Saturation analyses revealed that capacity for ligand is reduced by approximately 50% when adducted by 4-HNE. Thermal stability curves of apo L-FABP was also found to be significantly affected by 4-HNE adduction (ΔTm = 5.44°C, P<0.01). Computational-based molecular modeling simulations of adducted protein revealed minor conformational changes in global protein structure of apo and holo L-FABP while more apparent differences were observed within the internal binding pocket, revealing reduced area and structural integrity. New solvent accessible portals on the periphery of the protein were observed following 4-HNE modification in both the apo and holo state, suggesting an adaptive response to carbonylation. The results from this study detail the dynamic process associated with L-FABP modification by 4-HNE and provide insight as to how alterations in structural integrity and ligand binding may a contributing factor in the pathogenesis of ALD

    Anti-Hu antibodies activate enteric and sensory neurons.

    Get PDF
    IgG of type 1 anti-neuronal nuclear antibody (ANNA-1, anti-Hu) specificity is a serological marker of paraneoplastic neurological autoimmunity (including enteric/autonomic) usually related to small-cell lung carcinoma. We show here that IgG isolated from such sera and also affinity-purified anti-HuD label enteric neurons and cause an immediate spike discharge in enteric and visceral sensory neurons. Both labelling and activation of enteric neurons was prevented by preincubation with the HuD antigen. Activation of enteric neurons was inhibited by the nicotinic receptor antagonists hexamethonium and dihydro-β-erythroidine and reduced by the P2X antagonist pyridoxal phosphate-6-azo (benzene-2,4-disulfonic acid (PPADS) but not by the 5-HT3 antagonist tropisetron or the N-type Ca-channel blocker ω-Conotoxin GVIA. Ca(++) imaging experiments confirmed activation of enteric neurons but not enteric glia. These findings demonstrate a direct excitatory action of ANNA-1, in particular anti-HuD, on visceral sensory and enteric neurons, which involves nicotinic and P2X receptors. The results provide evidence for a novel link between nerve activation and symptom generation in patients with antibody-mediated gut dysfunction

    A murine model of ulcerative colitis: induced with sinusitis-derived superantigen and food allergen

    Get PDF
    BACKGROUND: The etiology of ulcerative colitis (UC) is to be understood. The basic pathological feature of UC is intestinal chronic inflammation. Superantigen, such as Staphylococcus enterotoxin B (SEB), is reported to compromise intestinal barrier function by increasing epithelial permeability and initiate inflammation in the intestinal mucosa. Inasmuch as anatomic position of the sinus, chronic sinusitis-derived SEB may follow the secretion and to be swallowed down to the gastrointestinal tract and induce lesions to the intestinal mucosa. METHODS: Sinus wash fluid (SWF, containing SEB) was collected from a group of patients with both chronic sinusitis (CS) and UC. A group of mice were sensitized to ovalbumin (OVA) in the presence of SWF. The sensitized mice were challenged with the specific antigen OVA. The inflammatory status of the colonic tissue was determined with histology, serology and electron microscopy. Using horseradish peroxidase (HRP) as a tracer, another group of mice was stimulated with SWF for 2 hours. The HRP activity was detected in the colonic tissue with enzymatic approaches and electron microscopy. RESULTS: Epithelial hyperpermeability in colonic epithelium was induced by stimulating with SWF. The HRP activity in the colonic mucosa was almost 11 times more in the SWF treated group (3.2 ± 0.6 μg/g tissue) than the control group (0.3 ± 0.1 μg/g tissue). Mice were sensitized using a mixture of SWF and OVA (serum OVA-specific IgE was detected with a highest titer as 1:64). Challenge with OVA induced extensive inflammation in the colonic mucosa by showing (1) marked degranulation in mast cells (MC, 46.3 ± 4.5%) and eosinophils (Eo, 55.7 ± 4.2%); (2) inflammatory cell infiltration (MC = 145.2 ± 11.4; Eo = 215.8 ± 12.5; mononuclear cell = 258.4 ± 15.3/mm(2 )tissue); (3) increased MPO activity (12.9 ± 3.2 U/g tissue) and inflammatory scores (1.8 ± 0.3); (4) mucosal surface ulcers; (5) edema in the lamina propria; (6) bacterial translocation and abscess formation in the subepithelial region. CONCLUSION: Introducing Sinusitis-derived SEB-containing SWF to the gastrointestinal tract compromised colonic mucosal barrier function increasing epithelial permeability to luminal macromolecular protein in mice. The SWF facilitated colonic mucosal sensitization to luminal antigen. Multiple challenging the sensitized colonic mucosa with specific antigen OVA induced inflammation, induced a condition similar to human ulcerative colitis

    Newly established tumourigenic primary human colon cancer cell lines are sensitive to TRAIL-induced apoptosis in vitro and in vivo

    Get PDF
    Most data on the therapeutic potential of tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) as well as resistance to FAS ligand (FASL) in colorectal cancer have come from in vitro studies using cell lines. To gain a clearer understanding about the susceptibility of patient tumours to TRAIL and FASL, we derived primary human cancer epithelial cells from colon cancer patients. Characterisation of primary cultures PAP60 and MIH55 determined their highly proliferating advantage, transforming capability and tumorigenicity in vitro and in vivo. Although FASL treatment appeared to cause little apoptosis only in the PAP60 primary culture, increased apoptosis independent of p53 was observed in both primary PAP60 and MIH55 and control cell lines Caco-2, HT29 and DLD-1 after treatment with SuperKiller TRAIL. Expression analysis of death receptors (DR) in the original parental tumours, the primary cultures before and after engraftment as well as the mouse xenografts, revealed a significant upregulation of both DR4 and DR5, which correlated to differences in sensitivity of the cells to TRAIL-induced apoptosis. Treating patient tumour xenograft/SCID mouse models with Killer TRAIL in vivo suppressed tumour growth. This is the first demonstration of TRAIL-induced apoptosis in characterised tumorigenic primary human cultures (in vitro) and antitumour activity in xenograft models (in vivo)

    Membranes with the Same Ion Channel Populations but Different Excitabilities

    Get PDF
    Electrical signaling allows communication within and between different tissues and is necessary for the survival of multicellular organisms. The ionic transport that underlies transmembrane currents in cells is mediated by transporters and channels. Fast ionic transport through channels is typically modeled with a conductance-based formulation that describes current in terms of electrical drift without diffusion. In contrast, currents written in terms of drift and diffusion are not as widely used in the literature in spite of being more realistic and capable of displaying experimentally observable phenomena that conductance-based models cannot reproduce (e.g. rectification). The two formulations are mathematically related: conductance-based currents are linear approximations of drift-diffusion currents. However, conductance-based models of membrane potential are not first-order approximations of drift-diffusion models. Bifurcation analysis and numerical simulations show that the two approaches predict qualitatively and quantitatively different behaviors in the dynamics of membrane potential. For instance, two neuronal membrane models with identical populations of ion channels, one written with conductance-based currents, the other with drift-diffusion currents, undergo transitions into and out of repetitive oscillations through different mechanisms and for different levels of stimulation. These differences in excitability are observed in response to excitatory synaptic input, and across different levels of ion channel expression. In general, the electrophysiological profiles of membranes modeled with drift-diffusion and conductance-based models having identical ion channel populations are different, potentially causing the input-output and computational properties of networks constructed with these models to be different as well. The drift-diffusion formulation is thus proposed as a theoretical improvement over conductance-based models that may lead to more accurate predictions and interpretations of experimental data at the single cell and network levels

    Multiparameter Phospho-Flow Analysis of Lymphocytes in Early Rheumatoid Arthritis: Implications for Diagnosis and Monitoring Drug Therapy

    Get PDF
    The precise mechanisms involved in the initiation and progression of rheumatoid arthritis (RA) are not known. Early stages of RA often have non-specific symptoms, delaying diagnosis and therapy. Additionally, there are currently no established means to predict clinical responsiveness to therapy. Immune cell activation is a critical component therefore we examined the cellular activation of peripheral blood mononuclear cells (PBMCs) in the early stages of RA, in order to develop a novel diagnostic modality.PBMCs were isolated from individuals diagnosed with early RA (ERA) (n = 38), longstanding RA (n = 10), osteoarthritis (OA) (n = 19) and from healthy individuals (n = 10). PBMCs were examined for activation of 15 signaling effectors, using phosphorylation status as a measure of activation in immunophenotyped cells, by flow cytometry (phospho-flow). CD3+CD4+, CD3+CD8+ and CD20+ cells isolated from patients with ERA, RA and OA exhibited activation of multiple phospho-epitopes. ERA patient PBMCs showed a bias towards phosphorylation-activation in the CD4+ and CD20+ compartments compared to OA PBMCs, where phospho-activation was primarily observed in CD8+ cells. The ratio of phospho (p)-AKT/p-p38 was significantly elevated in patients with ERA and may have diagnostic potential. The mean fluorescent intensity (MFI) levels for p-AKT and p-H3 in CD4+, CD8+ and CD20+ T cells correlated directly with physician global assessment scores (MDGA) and DAS (disease activity score). Stratification by medications revealed that patients receiving leflunomide, systemic steroids or anti-TNF therapy had significant reductions in phospho-specific activation compared with patients not receiving these therapies. Correlative trends between medication-associated reductions in the levels of phosphorylation of specific signaling effectors and lower disease activity were observed.Phospho-flow analysis identified phosphorylation-activation of specific signaling effectors in the PB from patients with ERA. Notably, phosphorylation of these signaling effectors did not distinguish ERA from late RA, suggesting that the activation status of discrete cell populations is already established early in disease. However, when the ratio of MFI values for p-AKT and p-p38 is >1.5, there is a high likelihood of having a diagnosis of RA. Our results suggest that longitudinal sampling of patients undergoing therapy may result in phospho-signatures that are predictive of drug responsiveness
    corecore