480 research outputs found
Clinical and genetic factors associated with kidney tubular dysfunction in a real-life single centre cohort of HIV-positive patients
BACKGROUND: Tenofovir (TDF) is one of the most widely used antiretroviral drug. Despite the high degree of tolerability a small percentage of patients experienced alteration in tubular function during TDF use. Intracellular TDF disposition is regulated by ATP-binding cassette (ABC) drug efflux transporters and, a reduced transport activity may be implicated in accumulation of TDF into the cells. The aim of our study was to assess the major determinants of TDF associated tubular dysfunction (KTD) in a real-life setting including the usefulness of single-nucleotide polymorphisms (SNPs) mapping into ABCC2, ABCC4 and ABCC10 genes. METHODS: We retrospectively analyzed all HIV positive patients who were followed at the Infectious Diseases Unit, DIBIC Luigi Sacco, University of Milan from April 2013 to June 2016. All patients treated with TDF who underwent a genotypization for the functional variants mapping in ABCC2 rs717620 (-24 C > T), ABCC4 rs1751034 (3463 A > G) and ABCC10 rs2125739 (T > C) were evaluated. KTD was defined as the presence of urine phosphate wasting and/or proteinuria at 24 h urine analysis. RESULTS: One hundred fifty-eight patients were genotyped, of which 42 (26.6%) experienced signs of KTD. No statistical significant differences were observed among patients with or without KTD regarding age, gender, ethnicity and comorbidities (hypertension and diabetes). The percentage of patients with KTD was higher among those with "GG" genotype at rs1751034 of ABCC4 compared to patients without KTD [6 (14.3%) vs 4 (3.5%), p = 0.01]. No statistical significant differences were observed regarding the distribution of ABCC2 and ABCC10 SNPs. Carriers of "G" allele in homozygous status at rs1751034 of ABCC4 showed a significant association with KTD (Odds Ratio 4.67, 95% CI 1.25-17.46, p = 0.02) in bivariate analysis, but this association was lost in multivariable analysis. A significant association between bone diseases and KTD was observed (Odds Ratio 3.178, 95%CI 1.529-6.603, p = 0.002). CONCLUSIONS: According to our results ABCC4 rs1751034 could be a genetic determinant of KTD; however validation studies are needed for therapy personalization. Noteworthy, a strong association between bone disease and KTD was also observed
Recommended from our members
Involvement of Bruton's tyrosine kinase in FcepsilonRI-dependent mast cell degranulation and cytokine production.
We investigated the role of Bruton's tyrosine kinase (Btk) in FcepsilonRI-dependent activation of mouse mast cells, using xid and btk null mutant mice. Unlike B cell development, mast cell development is apparently normal in these btk mutant mice. However, mast cells derived from these mice exhibited significant abnormalities in FcepsilonRI-dependent function. xid mice primed with anti-dinitrophenyl monoclonal IgE antibody exhibited mildly diminished early-phase and severely blunted late-phase anaphylactic reactions in response to antigen challenge in vivo. Consistent with this finding, cultured mast cells derived from the bone marrow cells of xid or btk null mice exhibited mild impairments in degranulation, and more profound defects in the production of several cytokines, upon FcepsilonRI cross-linking. Moreover, the transcriptional activities of these cytokine genes were severely reduced in FcepsilonRI-stimulated btk mutant mast cells. The specificity of these effects of btk mutations was confirmed by the improvement in the ability of btk mutant mast cells to degranulate and to secrete cytokines after the retroviral transfer of wild-type btk cDNA, but not of vector or kinase-dead btk cDNA. Retroviral transfer of Emt (= Itk/Tsk), Btk's closest relative, also partially improved the ability of btk mutant mast cells to secrete mediators. Taken together, these results demonstrate an important role for Btk in the full expression of FcepsilonRI signal transduction in mast cells
Deficient Wnt signalling triggers striatal synaptic degeneration and impaired motor behaviour in adult mice.
Synapse degeneration is an early and invariant feature of neurodegenerative diseases. Indeed, synapse loss occurs prior to neuronal degeneration and correlates with the symptom severity of these diseases. However, the molecular mechanisms that trigger synaptic loss remain poorly understood. Here we demonstrate that deficient Wnt signalling elicits synaptic degeneration in the adult striatum. Inducible expression of the secreted Wnt antagonist Dickkopf1 (Dkk1) in adult mice (iDkk1) decreases the number of cortico-striatal glutamatergic synapses and of D1 and D2 dopamine receptor clusters. Synapse loss occurs in the absence of axon retraction or cell death. The remaining excitatory terminals contain fewer synaptic vesicles and have a reduced probability of evoked transmitter release. IDkk1 mice show impaired motor coordination and are irresponsive to amphetamine. These studies identify Wnts as key endogenous regulators of synaptic maintenance and suggest that dysfunction in Wnt signalling contributes to synaptic degeneration at early stages in neurodegenerative diseases
EACVI survey on radiation exposure in interventional echocardiography.
AIMS: The European Association of Cardiovascular Imaging (EACVI) Scientific Initiatives Committee performed a global survey on radiation exposure in interventional echocardiography. The survey aimed to collect data on local practices for radioprotection in interventional echocardiography and to assess the awareness of echocardiography operators about radiation-related risks. METHODS AND RESULTS: A total of 258 interventional echocardiographers from 52 different countries (48% European) responded to the survey. One hundred twenty-two (47%) participants were women. Two-thirds (76%) of interventional echocardiographers worked in tertiary care/university hospitals. Interventional echocardiography was the main clinical activity for 34% of the survey participants. The median time spent in the cath-lab for the echocardiographic monitoring of structural heart procedures was 10 (5-20) hours/month. Despite this, only 28% of interventional echocardiographers received periodic training and certification in radioprotection and 72% of them did not know their annual radiation dose. The main adopted personal protection devices were lead aprons and thyroid collars (95% and 92% of use, respectively). Dedicated architectural protective shielding was not available for 33% of interventional echocardiographers. Nearly two-thirds of responders thought that the radiation exposure of interventional echocardiographers was higher than that of interventional cardiologists and 72% claimed for an improvement in the radioprotection measures. CONCLUSION: Radioprotection measures for interventional echocardiographers are widely variable across centres. Radioprotection devices are often underused by interventional echocardiographers, portending an increased radiation-related risk. International scientific societies working in the field should collaborate to endorse radioprotection training, promote reliable radiation dose assessment, and support the adoption of radioprotection shielding dedicated to interventional echocardiographers
Gait patterns in Prader-Willi and Down syndrome patients
<p>Abstract</p> <p>Background</p> <p>Prader-Willi (PWS) and Down Syndrome (DS) are two genetic disorders characterised by some common clinical and functional features. A quantitative description and comparison of their patterns would contribute to a deeper understanding of the determinants of motor disability in these two syndromes. The aim of this study was to measure gait pattern in PWS and DS in order to provide data for developing evidence-based deficit-specific or common rehabilitation strategies.</p> <p>Methods</p> <p>19 PWS patients (17.7-40 yr) and 21 DS patients (18-39 yr) were evaluated with an optoelectronic system and force platforms for measuring kinematic and kinetic parameters during walking. The results were compared with those obtained in a group of normal-weight controls (Control Group: CG; 33.4 + 9.6 yr).</p> <p>Results and Discussion</p> <p>The results show that PWS and DS are characterised by different gait strategies. Spatio-temporal parameters indicated a cautious, abnormal gait in both groups, but DS walked with a less stable strategy than PWS. As for kinematics, DS showed a significantly reduced hip and knee flexion, especially at initial contact and ankle range of motion than PWS. DS were characterised by lower ranges of motion (p < 0.05) in all joints than CG and PWS. As for ankle kinetics, both PWS and DS showed a significantly lower push-off during terminal stance than CG, with DS yielding the lowest values. Stiffness at hip and ankle level was increased in DS. PWS showed hip stiffness values close to normal. At ankle level, stiffness was significantly decreased in both groups.</p> <p>Conclusions</p> <p>Our data show that DS walk with a less physiological gait pattern than PWS. Based on our results, PWS and DS patients need targeted rehabilitation and exercise prescription. Common to both groups is the aim to improve hypotonia, muscle strength and motor control during gait. In DS, improving pelvis and hip range of motion should represent a major specific goal to optimize gait pattern.</p
PPAR? Downregulation by TGF in Fibroblast and Impaired Expression and Function in Systemic Sclerosis: A Novel Mechanism for Progressive Fibrogenesis
The nuclear orphan receptor peroxisome proliferator-activated receptor-gamma (PPAR-γ) is expressed in multiple cell types in addition to adipocytes. Upon its activation by natural ligands such as fatty acids and eicosanoids, or by synthetic agonists such as rosiglitazone, PPAR-γ regulates adipogenesis, glucose uptake and inflammatory responses. Recent studies establish a novel role for PPAR-γ signaling as an endogenous mechanism for regulating transforming growth factor-ß (TGF-ß)- dependent fibrogenesis. Here, we sought to characterize PPAR-γ function in the prototypic fibrosing disorder systemic sclerosis (SSc), and delineate the factors governing PPAR-γ expression. We report that PPAR-γ levels were markedly diminished in skin and lung biopsies from patients with SSc, and in fibroblasts explanted from the lesional skin. In normal fibroblasts, treatment with TGF-ß resulted in a time- and dose-dependent down-regulation of PPAR-γ expression. Inhibition occurred at the transcriptional level and was mediated via canonical Smad signal transduction. Genome-wide expression profiling of SSc skin biopsies revealed a marked attenuation of PPAR-γ levels and transcriptional activity in a subset of patients with diffuse cutaneous SSc, which was correlated with the presence of a ''TGF-ß responsive gene signature'' in these biopsies. Together, these results demonstrate that the expression and function of PPAR-γ are impaired in SSc, and reveal the existence of a reciprocal inhibitory cross-talk between TGF-ß activation and PPAR-γ signaling in the context of fibrogenesis. In light of the potent anti-fibrotic effects attributed to PPAR-γ, these observations lead us to propose that excessive TGF-ß activity in SSc accounts for impaired PPAR-γ function, which in turn contributes to unchecked fibroblast activation and progressive fibrosis. © 2010 Wei et al
Stem cell factor and its soluble receptor (c-kit) in serum of asthmatic patients- correlation with disease severity
<p>Abstract</p> <p>Background</p> <p>SCF (stem cell factor) is a pleiotropic cytokine exerting its role at different stages of bone marrow development and affecting eosinophil activation, mast cells and basophil chemotaxis and survival. The aim of the study was to assess concentration of SCF and its soluble receptor c-kit (sc-kit) in peripheral blood of patients with asthma referring it to asthma severity and phenotype.</p> <p>Methods</p> <p>The study involved 107 patients with bronchial asthma, well characterized with respect to severity and 21 healthy controls. Concentration of SCF and sc-kit in the patients serum were measured by ELISA method.</p> <p>Results</p> <p>Mean serum SCF level in the group of asthmatics (n = 88) was significantly higher as compared to healthy controls (1010 pg/ml ± 37 vs 799 ± 33; p < 0,001). The level of SCF was higher in patients with severe asthma as compared to patients with non-severe asthma (1054 +/- 41 pg/ml vs 819 +/- 50; p < 0,01) and correlated with dose of inhaled glucocorticosteroids taken by the patients to achieve asthma control (R = 0,28; p < 0,01). The mean sc-kit serum level did not differ between asthmatic patients and healthy controls, however the level of sc-kit in non-severe asthmatics was significantly higher as compared to patients with severe asthma and healthy controls. In asthmatic patients (n = 63) the level of sc-kit correlated positively with FEV1% predicted value (R = 0,45; p < 0,001) and MEF25% predicted value (R = 0,33; p < 0,01). The level of sc-kit inversely correlated with the dose of inhaled glucocorticosteroids taken by the patients (R = -0,26; p < 0,01).</p> <p>Conclusion</p> <p>Serum levels of SCF and its soluble receptor c-kit seem to be reflect asthma severity suggesting a role for these molecules in asthmatic inflammation.</p
Involvement of mast cells in monocrotaline-induced pulmonary hypertension in rats
Background: Mast cells (MCs) are implicated in inflammation and tissue remodeling. Accumulation of lung MCs is described in pulmonary hypertension (PH); however, whether MC degranulation and c-kit, a tyrosine kinase receptor critically involved in MC biology, contribute to the pathogenesis and progression of PH has not been fully explored.Methods: Pulmonary MCs of idiopathic pulmonary arterial hypertension (IPAH) patients and monocrotaline-injected rats (MCT-rats) were examined by histochemistry and morphometry. Effects of the specific c-kit inhibitor PLX and MC stabilizer cromolyn sodium salt (CSS) were investigated in MCT-rats both by the preventive and therapeutic approaches. Hemodynamic and right ventricular hypertrophy measurements, pulmonary vascular morphometry and analysis of pulmonary MC localization/counts/activation were performed in animal model studies.Results: There was a prevalence of pulmonary MCs in IPAH patients and MCT-rats as compared to the donors and healthy rats, respectively. Notably, the perivascular MCs were increased and a majority of them were degranulated in lungs of IPAH patients and MCT-rats (p < 0.05 versus donor and control, respectively). In MCT-rats, the pharmacological inhibitions of MC degranulation and c-kit with CSS and PLX, respectively by a preventive approach (treatment from day 1 to 21 of MCT-injection) significantly attenuated right ventricular systolic pressure (RVSP) and right ventricular hypertrophy (RVH). Moreover, vascular remodeling, as evident from the significantly decreased muscularization and medial wall thickness of distal pulmonary vessels, was improved. However, treatments with CSS and PLX by a therapeutic approach (from day 21 to 35 of MCT-injection) neither improved hemodynamics and RVH nor vascular remodeling.Conclusions: The accumulation and activation of perivascular MCs in the lungs are the histopathological features present in clinical (IPAH patients) and experimental (MCT-rats) PH. Moreover, the accumulation and activation of MCs in the lungs contribute to the development of PH in MCT-rats. Our findings reveal an important pathophysiological insight into the role of MCs in the pathogenesis of PH in MCT- rats
Deletion of Porcn in Mice Leads to Multiple Developmental Defects and Models Human Focal Dermal Hypoplasia (Goltz Syndrome)
Focal Dermal Hypoplasia (FDH) is a genetic disorder characterized by developmental defects in skin, skeleton and ectodermal appendages. FDH is caused by dominant loss-of-function mutations in X-linked PORCN. PORCN orthologues in Drosophila and mice encode endoplasmic reticulum proteins required for secretion and function of Wnt proteins. Wnt proteins play important roles in embryo development, tissue homeostasis and stem cell maintenance. Since features of FDH overlap with those seen in mouse Wnt pathway mutants, FDH likely results from defective Wnt signaling but molecular mechanisms by which inactivation of PORCN affects Wnt signaling and manifestations of FDH remain to be elucidated.We introduced intronic loxP sites and a neomycin gene in the mouse Porcn locus for conditional inactivation. Porcn-ex3-7flox mice have no apparent developmental defects, but chimeric mice retaining the neomycin gene (Porcn-ex3-7Neo-flox) have limb, skin, and urogenital abnormalities. Conditional Porcn inactivation by EIIa-driven or Hprt-driven Cre recombinase results in increased early embryonic lethality. Mesenchyme-specific Prx-Cre-driven inactivation of Porcn produces FDH-like limb defects, while ectodermal Krt14-Cre-driven inactivation produces thin skin, alopecia, and abnormal dentition. Furthermore, cell-based assays confirm that human PORCN mutations reduce WNT3A secretion.These data indicate that Porcn inactivation in the mouse produces a model for human FDH and that phenotypic features result from defective WNT signaling in ectodermal- and mesenchymal-derived structures
- …