8,737 research outputs found

    The sutures in dentistry

    Get PDF
    In oral surgery, the last phase of a surgical operation is represented by the tissues suture, that allows the wound lips edges approximation and their stabilization, to promote haemostasis, to avoid the alimentary residues accumulation on the incision line and allow the first intention healing. A good suture avoids that the displacing forces generated by the muscular insertions, functional movements and by the external agents destabilize or cause the surgical wound deiscence. The purpose of this study was to re-examine the suture threads characteristics, properties and biological interactions evaluating the different studies published in literature results and conclusions. In conclusion, the authors recommended the use of the different suture threads on the dependence of the oral surgery operation type that must be performed, of the patient compliance and of the various suture materials physical and biocompatibility characteristics

    Spin dynamics in hole-doped two-dimensional S=1/2 Heisenberg antiferromagnets: ^{63}Cu NQR relaxation in La_{2-x}Sr_xCuO_4 for x0.04x\leq 0.04

    Full text link
    The effects on the correlated Cu^{2+} S = 1/2 spin dynamics in the paramagnetic phase of La_{2-x}Sr_xCuO_4 (for x0.04x \lesssim 0.04) due to the injection of holes are studied by means of ^{63}Cu NQR spin-lattice relaxation time T_1 measurements. The results are discussed in the framework of the connection between T_1 and the in-plane magnetic correlation length ξ2D(x,T)\xi_{2D}(x,T). It is found that at high temperatures the system remains in the renormalized classical regime, with a spin stiffness constant ρs(x)\rho_s(x) reduced by small doping to an extent larger than the one due to Zn doping. For x0.02x\gtrsim 0.02 the effect of doping on ρs(x)\rho_s(x) appears to level off. The values for ρs(x)\rho_s(x) derived from T_1 for T500T\gtrsim 500 K are much larger than the ones estimated from the temperature behavior of sublattice magnetization in the ordered phase (TTNT\leq T_N). It is argued that these features are consistent with the hypothesis of formation of stripes of microsegregated holes.Comment: 10 pages, 3 figure

    The 346 A.D. earthquake( Central-Southern Italy): an archaeoseismological approach

    Get PDF
    The 346 A.D. earthquake is known through sparse historical sources. It is mentioned by Hyeronimus as felt in Rome and responsible for damage in the ancient Campania Province. Four epigraphs report the earthquake as the cause for the restorations of buildings at Aesernia-Isernia, Allifae-Alife, Telesia-Telese and Saepinum-Sepino. On this basis, an area possibly struck by the earthquake was already defined in the literature. Another seventeen epigraphs mentioning restoration or re-building of edifices in localities of central-southern Italy (without explicitly referring to the earthquake as the cause of the damage) are possibly related to the earthquake effects. We tried to enhance our knowledge on the 346 earthquake through archaeoseismological analyses. The investigation has benefited from specific fieldwork during archaeological excavations and a critical review of the available archaeological literature. However, a correct archaeoseismological interpretation is hindered by the occurrence of two earthquakes (346 and 375 A.D.) in a short time span and in adjacent areas (whose effects may be archaeo-chronologically undistinguishable) and the not always univocal evidence of the seismic origin of the detected collapses or restoration of structures. For this reason we propose a representation of the 346 A.D. effects through two extreme pictures: 1) the localities for which conclusive data on the earthquake effects are available and 2) the data of point 1 plus the localities for which archaeoseismological data consistent with the earthquake are available. The latter view defines an area of possible damage related to the 346 event larger than that previously known. In particular, the earthquake damage may result from a seismic sequence similar to that, which struck a part of the central and the southern Apennines in 1456, or from an event comparable to that which occurred in 1805, responsible for widespread damage in the northern sector of the southern Apennines

    Searching for Dark Matter in the CMB: A Compact Parameterization of Energy Injection from New Physics

    Full text link
    High-precision measurements of the temperature and polarization anisotropies of the cosmic microwave background radiation have been previously employed to set robust constraints on dark matter annihilation during recombination. In this work we improve and generalize these constraints to apply to energy deposition during the recombination era with arbitrary redshift dependence. Our approach also provides more rigorous and model-independent bounds on dark matter annihilation and decay scenarios. We employ principal component analysis to identify a basis of weighting functions for the energy deposition. The coefficients of these weighting functions parameterize any energy deposition model and can be constrained directly by experiment. For generic energy deposition histories that are currently allowed by WMAP7 data, up to 3 principal component coefficients are measurable by Planck and up to 5 coefficients are measurable by an ideal cosmic variance limited experiment. For WIMP dark matter, our analysis demonstrates that the effect on the CMB is described well by a single (normalization) parameter and a "universal" redshift dependence for the energy deposition history. We give WMAP 7 constraints on both generic energy deposition histories and the universal WIMP case.Comment: 30 pages, 24 figure

    Total energy global optimizations using non orthogonal localized orbitals

    Full text link
    An energy functional for orbital based O(N)O(N) calculations is proposed, which depends on a number of non orthogonal, localized orbitals larger than the number of occupied states in the system, and on a parameter, the electronic chemical potential, determining the number of electrons. We show that the minimization of the functional with respect to overlapping localized orbitals can be performed so as to attain directly the ground state energy, without being trapped at local minima. The present approach overcomes the multiple minima problem present within the original formulation of orbital based O(N)O(N) methods; it therefore makes it possible to perform O(N)O(N) calculations for an arbitrary system, without including any information about the system bonding properties in the construction of the input wavefunctions. Furthermore, while retaining the same computational cost as the original approach, our formulation allows one to improve the variational estimate of the ground state energy, and the energy conservation during a molecular dynamics run. Several numerical examples for surfaces, bulk systems and clusters are presented and discussed.Comment: 24 pages, RevTex file, 5 figures available upon reques

    Paleoseismology of silent faults in the Central Apennines (Italy): the Campo Imperatore Fault (Gran Sasso Range Fault System)

    Get PDF
    Paleoseismological analyses were performed along the Campo Imperatore Fault (part of the Gran Sasso Range Fault System) in order to define the seismogenic behaviour (recurrence interval for surface faulting events, elapsed time since the last activation, maximum expected magnitude). Four trenches were excavated across secondary faults which are related to the main fault zone. The youngest event (E1) occurred after 3480-3400 years BP; a previous event (E2) occurred between 7155-7120/7035-6790 years BP and 5590-5565/5545-5475 years BP, while the oldest one (E3) has a Late Pleistocene age. The chronological interval between the last two displacement events ranges between 1995 and 6405 years. The minimum elapsed time since the last activation is 800 years, due to the absence of historical earthquakes which may have been caused by the Campo Imperatore Fault and based on the completeness of the historical catalogues for the large magnitude events in the last eight centuries. Based on the length of the fault surficial expression, earthquakes with M 6.95 may be expected from the activation of the entire Gran Sasso Range Fault System. The effects of the fault activation were investigated through the simulation of a damage scenario obtained by means of the FaCES computer code, made by the National Seismic Survey for civil protection purposes. The damage scenario shows that the activation of the Gran Sasso Range Fault System may be responsible for an earthquake with epicentral intensity I0 10.5 MCS, with a number of collapsed buildings ranging between 7900 and 31100 and a number of damaged buildings ranging between 99 000 and 234 000. The investigated case defines, therefore, a high risk level for the region affected by the Campo Imperatore Fault

    Landslide hazard assessment in the Collazzone area, Umbria, Central Italy

    Get PDF
    We present the results of the application of a recently proposed model to determine landslide hazard. The model predicts where landslides will occur, how frequently they will occur, and how large they will be in a given area. For the Collazzone area, in the central Italian Apennines, we prepared a multi-temporal inventory map through the interpretation of multiple sets of aerial photographs taken between 1941 and 1997 and field surveys conducted in the period between 1998 and 2004. We then partitioned the 79 square kilometres study area into 894 slope units, and obtained the probability of spatial occurrence of landslides by discriminant analysis of thematic variables, including morphology, lithology, structure and land use. For each slope unit, we computed the expected landslide recurrence by dividing the total number of landslide events inventoried in the terrain unit by the time span of the investigated period. Assuming landslide recurrence was constant, and adopting a Poisson probability model, we determined the exceedance probability of having one or more landslides in each slope unit, for different periods. We obtained the probability of landslide size, a proxy for landslide magnitude, by analysing the frequency-area statistics of landslides, obtained from the multi-temporal inventory map. Lastly, assuming independence, we determined landslide hazard for each slope unit as the joint probability of landslide size, of landslide temporal occurrence, and of landslide spatial occurrence

    Identification and mapping of recent rainfall-induced landslides using elevation data collected by airborne Lidar

    Get PDF
    International audienceA high resolution Digital Elevation Model with a ground resolution of 2 m×2 m (DEM2) was obtained for the Collazzone area, central Umbria, through weighted linear interpolation of elevation points acquired by Airborne Lidar Swath Mapping. Acquisition of the elevation data was performed on 3 May 2004, following a rainfall period that resulted in numerous landslides. A reconnaissance field survey conducted immediately after the rainfall period allowed mapping 70 landslides in the study area, for a total landslide area of 2.7×105 m2. Topographic derivative maps obtained from the DEM2 were used to update the reconnaissance landslide inventory map in 22 selected sub-areas. The revised inventory map shows 27% more landslides and 39% less total landslide area, corresponding to a smaller average landslide size. Discrepancies between the reconnaissance and the revised inventory maps were attributed to mapping errors and imprecision chiefly in the reconnaissance field inventory. Landslides identified exploiting the Lidar elevation data matched the local topography more accurately than the same landslides mapped using the existing topographic maps. Reasons for the difference include an incomplete or inaccurate view of the landslides in the field, an unfaithful representation of topography in the based maps, and the limited time available to map the landslides in the field. The high resolution DEM2 was compared to a coarser resolution (10 m×10 m) DEM10 to establish how well the two DEMs captured the topographic signature of landslides. Results indicate that the improved topographic information provided by DEM2 was significant in identifying recent rainfall-induced landslides, and was less significant in improving the representation of stable slopes

    Rainfall induced landslides in December 2004 in south-western Umbria, central Italy: types, extent, damage and risk assessment

    No full text
    International audienceThe autumn of 2004 was particularly wet in Umbria, with cumulative rainfall in the period from October to December exceeding 600 mm. On 4?6 December and on 25?27 December 2004, two storms hit the Umbria Region producing numerous landslides, which were abundant near the town of Orvieto where they affected volcanic deposits and marine sediments. In this work, we document the type and abundance of the rainfall-induced landslides in the Orvieto area, in south-western Umbria, we study the rainfall conditions that triggered the landslides, including the timing of the slope failures, we determine the geotechnical properties of the failed volcanic materials, and we discuss the type and extent of damage produced by the landslides. We then use the recent event landslide information to test a geomorphological assessment of landslide hazards and risk prepared for the village of Sugano, in the Orvieto area. Based on the results of the test, we update the existing landslide hazards and risk scenario for extremely rapid landslides, mostly rock falls, and we introduce a new landslide scenario for rapid and very rapid landslides, including soil slides, debris flows and debris avalanches
    corecore