116 research outputs found

    Study of solid 4He in two dimensions. The issue of zero-point defects and study of confined crystal

    Full text link
    Defects are believed to play a fundamental role in the supersolid state of 4He. We report on studies by exact Quantum Monte Carlo (QMC) simulations at zero temperature of the properties of solid 4He in presence of many vacancies, up to 30 in two dimensions (2D). In all studied cases the crystalline order is stable at least as long as the concentration of vacancies is below 2.5%. In the 2D system for a small number, n_v, of vacancies such defects can be identified in the crystalline lattice and are strongly correlated with an attractive interaction. On the contrary when n_v~10 vacancies in the relaxed system disappear and in their place one finds dislocations and a revival of the Bose-Einstein condensation. Thus, should zero-point motion defects be present in solid 4He, such defects would be dislocations and not vacancies, at least in 2D. In order to avoid using periodic boundary conditions we have studied the exact ground state of solid 4He confined in a circular region by an external potential. We find that defects tend to be localized in an interfacial region of width of about 15 A. Our computation allows to put as upper bound limit to zero--point defects the concentration 0.003 in the 2D system close to melting density.Comment: 17 pages, accepted for publication in J. Low Temp. Phys., Special Issue on Supersolid

    Polarization Effects in Superfluid 4^4He

    Full text link
    A theory of thermoelectric phenomena in superfluid 4He^4He is developed. It is found an estimation of the dipole moment of helium atom arising due to electron shell deformation caused by pushing forces from the side of its surrounding atoms. The corresponding electric signal generated in a liquid consisting of electrically neutral atoms by the ordinary sound waves is found extremely small. The second sound waves in superfluid 4He^4He generate the polarization of liquid induced by the relative accelerated motion of the superfluid and the normal component. The derived ratio of the amplitudes of temperature and electric polarization potential was proved to be practically temperature independent. Its magnitude is in reasonable correspondence with the experimental observations. The polarity of electric signal is determined by the sign of temperature gradient in accordance with the measurements. The problem of the roton excitations dipole moment is also discussed.Comment: 8 pages, no figure

    Zero-point vacancies in quantum solids

    Full text link
    A Jastrow wave function (JWF) and a shadow wave function (SWF) describe a quantum solid with Bose--Einstein condensate; i.e. a supersolid. It is known that both JWF and SWF describe a quantum solid with also a finite equilibrium concentration of vacancies x_v. We outline a route for estimating x_v by exploiting the existing formal equivalence between the absolute square of the ground state wave function and the Boltzmann weight of a classical solid. We compute x_v for the quantum solids described by JWF and SWF employing very accurate numerical techniques. For JWF we find a very small value for the zero point vacancy concentration, x_v=(1.4\pm0.1) x 10^-6. For SWF, which presently gives the best variational description of solid 4He, we find the significantly larger value x_v=(1.4\pm0.1) x 10^-3 at a density close to melting. We also study two and three vacancies. We find that there is a strong short range attraction but the vacancies do not form a bound state.Comment: 19 pages, submitted to J. Low Temp. Phy

    Excitation spectrum in two-dimensional superfluid ⁴He

    No full text
    In this work we perform an ab-initio study of an ideal two-dimensional sample of ⁴He atoms, a model for ⁴He films adsorbed on several kinds of substrates. Starting from a realistic hamiltonian we face the microscopic study of the excitation phonon–roton spectrum of the system at zero temperature. Our approach relies on path integral ground state Monte Carlo projection methods, allowing to evaluate exactly the dynamical density correlation functions in imaginary time, and this gives access to the dynamical structure factor of the system S(q, ), containing information about the excitation spectrum E(q), resulting in sharp peaks in S(q, ). The actual evaluation of S(q, ) requires the inversion of the Laplace transform in ill-posed conditions, which we face via the genetic inversion via falsification of theories technique. We explore the full density range from the region of spinodal decomposition to the freezing density, i.e., 0.0321 Å⁻² – 0.0658 Å⁻². In particular we follow the density dependence of the excitation spectrum, focusing on the low-wave vector behavior of E(q), the roton dispersion, the strength of single quasiparticle peak, Z(q), and the static density response function, (q). As the density increases, the dispersion E(q) at low-wave vector changes from a superlinear (anomalous dispersion) trend to a sublinear (normal dispersion) one, anticipating the crystallization of the system; at the same time the maxon–roton structure, which is barely visible at low density, becomes well developed at high densities and the roton wave vector has a strong density dependence. Connection is made with recent inelastic neutron scattering results from highly ordered silica nanopores partially filled with ⁴He

    Brexit or Bremain? : evidence from bubble analysis

    Get PDF
    We applied the Johansen-Ledoit-Sornette (JLS) model to detect possible bubbles and crashes related to the Brexit/Bremain referendum scheduled for 23rd June 2016. Our implementation includes an enhanced model calibration using Genetic Algorithms. We selected a few historical financial series sensitive to the Brexit/Bremain scenario, representative of multiple asset classes. We found that equity and currency asset classes show no bubble signals, while rates, credit and real estate show super-exponential behaviour and instabilities typical of bubble regime. Our study suggests that, under the JLS model, equity and currency markets do not expect crashes or sharp rises following the referendum results. Instead, rates and credit markets consider the referendum a risky event, expecting either a Bremain scenario or a Brexit scenario edulcorated by central banks intervention. In the case of real estate, a crash is expected, but its relationship with the referendum results is unclear

    Variational Monte Carlo study of the ground state properties and vacancy formation energy of solid para-H2 using a shadow wave function

    Full text link
    A Shadow Wave Function (SWF) is employed along with Variational Monte Carlo techniques to describe the ground state properties of solid molecular para-hydrogen. The study has been extended to densities below the equilibrium value, to obtain a parameterization of the SWF useful for the description of inhomogeneous phases. We also present an estimate of the vacancy formation energy as a function of the density, and discuss the importance of relaxation effects near the vacant site

    Two-body correlations and the superfluid fraction for nonuniform systems

    Full text link
    We extend the one-body phase function upper bound on the superfluid fraction in a periodic solid (a spatially ordered supersolid) to include two-body phase correlations. The one-body current density is no longer proportional to the gradient of the one-body phase times the one-body density, but rather it depends also on two-body correlation functions. The equations that simultaneously determine the one-body and two-body phase functions require a knowledge of one-, two-, and three-body correlation functions. The approach can also be extended to disordered solids. Fluids, with two-body densities and two-body phase functions that are translationally invariant, cannot take advantage of this additional degree of freedom to lower their energy.Comment: 13 page

    Long-range correlations in quantum solids

    Full text link

    Excitation spectrum in two-dimensional superfluid 4He

    Get PDF
    In this work we perform an ab-initio study of an ideal two-dimensional sample of 4He atoms, a model for 4He films adsorbed on several kinds of substrates. Starting from a realistic Hamiltonian we face the microscopic study of the excitation phonon-roton spectrum of the system at zero temperature. Our approach relies on path integral ground state Monte Carlo projection methods, allowing to evaluate exactly the dynamic density correlation functions in imaginary time, and this gives access to the dynamic structure factor of the system S(q, \u3c9), containing information about the excitation spectrum E(q), resulting in sharp peaks in S(q, \u3c9). The actual evaluation of S(q, \u3c9) requires the inversion of the Laplace transform in ill-posed conditions, which we face via the genetic inversion via falsification of theories technique. We explore the full density range from the region of spinodal decomposition to the freezing density, i.e., 0.0321 \uc5-2-0.0658 \uc5-2. In particular we follow the density dependence of the excitation spectrum, focusing on the low-wave vector behavior of E(q), the roton dispersion, the strength of single quasi-particle peak, Z(q), and the static density response function, \u3c7(q). As the density increases, the dispersion E(q) at low-wave vector changes from a superlinear (anomalous dispersion) trend to a sublinear (normal dispersion) one, anticipating the crystallization of the system; at the same time the maxon-roton structure, which is barely visible at low density, becomes well developed at high densities, and the roton wave vector has a strong density dependence. Connection is made with recent inelastic neutron scattering results from highly ordered silica nanopores partially filled with 4He

    Annealing Effect for Supersolid Fraction in 4^4He

    Full text link
    We report on experimental confirmation of the non-classical rotational inertia (NCRI) in solid helium samples originally reported by Kim and Chan. The onset of NCRI was observed at temperatures below ~400 mK. The ac velocity for initiation of the NCRI suppression is estimated to be ~10 μ\mum/sec. After an additional annealing of the sample at T=1.8T= 1.8 K for 12 hours, ~ 10% relative increase of NCRI fraction was observed. Then after repeated annealing with the same conditions, the NCRI fraction was saturated. It differs from Reppy's observation on a low pressure solid sample.Comment: to be published in J. of Low Temp. Phys. (QFS2006 proceedings
    corecore