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In this work we perform an ab-initio study of an ideal two-dimensional sample of 
4
He atoms, a model for 

4
He 

films adsorbed on several kinds of substrates. Starting from a realistic hamiltonian we face the microscopic study 

of the excitation phonon–roton spectrum of the system at zero temperature. Our approach relies on path integral 

ground state Monte Carlo projection methods, allowing to evaluate exactly the dynamical density correlation 

functions in imaginary time, and this gives access to the dynamical structure factor of the system S(q, ), contain-

ing information about the excitation spectrum E(q), resulting in sharp peaks in S(q, ). The actual evaluation of 

S(q, ) requires the inversion of the Laplace transform in ill-posed conditions, which we face via the genetic in-

version via falsification of theories technique. We explore the full density range from the region of spinodal de-

composition to the freezing density, i.e., 0.0321 Å
–2

– 0.0658 Å
–2

. In particular we follow the density dependence 

of the excitation spectrum, focusing on the low-wave vector behavior of E(q), the roton dispersion, the strength 

of single quasiparticle peak, Z(q), and the static density response function, (q). As the density increases, the 

dispersion E(q) at low-wave vector changes from a superlinear (anomalous dispersion) trend to a sublinear (nor-

mal dispersion) one, anticipating the crystallization of the system; at the same time the maxon–roton structure, 

which is barely visible at low density, becomes well developed at high densities and the roton wave vector has a 

strong density dependence. Connection is made with recent inelastic neutron scattering results from highly or-

dered silica nanopores partially filled with 
4
He. 

PACS: 67.25.bh Films and restricted geometries; 

67.25.dt Sound and excitations. 

Keywords: superfluidity, two-dimensional quantum fluids, elementary excitations, roton. 

 

1. Introduction 

Helium exists in two stable isotopes, 
4
He and 

3
He, 

which differ for their nuclear spin: 
4
He atoms are bosons 

with nuclear spin I = 0, while 
3
He atoms are fermions with 

nuclear spin I = 1/2. The effective interaction among he-

lium atoms is well described by a hard core potential plus 

an attraction arising from zero-point fluctuations in the 

charge distribution. The interaction results in a simple 

Lennard–Jones-like two-body spherically symmetric po-

tential ( ),v r  for which accurate analytical expressions are 

known [1]. The hamiltonian of the bulk system reads: 

 
2

2

=1 < =1

ˆ ˆ ˆ= (| |)
2

N N

i i j
i i j

H v
m

r r  (1) 

where m  is the mass of 
4
He atoms. Despite its very simple 

structure, helium exhibits numerous exotic phenomena in 

condensed form, whose theoretical explanation, in some 

aspects, is still a big challenge nowadays. Along with the 

many fascinating physical features related to the well-

known phenomenon of superfluidity [2], which have been 

the object of several theoretical and experimental efforts, a 

unique fingerprint of such a system is the spectrum ( )E q  

of the elementary excitations. 

Excitations in 
4
He bulk systems have been extensively 

investigated after Landau’s original conjecture [3] about 

the phonon–roton dispersion relation ( )E q  and its connec-

tion with the definition of superfluidity in terms of a criti-

cal velocity. In 1953 Feynman showed that the shape of the 

phonon–roton spectrum can be justified on a quantum me-

chanical basis, relying on Bose statistics together with 

hard-core interactions [4]. Moreover, he suggested that the 

excitation spectrum of superfluid 
4
He may be investigated 

by inelastic neutron scattering experiments. This was rea-

lized only almost one decade later [5], beautifully confirm-

ing the original Landau’s guess. Actually, within the first 

Born approximation, the differential cross section in a 

thermal neutron scattering experiment on a sample of 
4
He 

atoms, apart from kinematical factors, is provided by the 

dynamical structure factor:  

 
ˆ ˆ1
ˆ ˆ( , ) = e e e

2

t t
i H i H

i tS q dt
N

q q  (2) 
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where the brakets indicate a ground state or a thermal av-

erage, Ĥ  is the Hamiltonian of the helium system (1), and 

1

ˆ ˆ= exp ( ),
N

i
i

iq q r  îr  being the position operator of the 

ith 
4
He atom, is the local density operator in Fourier space. 

Sharp peaks in  of ( , )S q  provide the spectrum of the 

elementary excitations of the system. 

On the theoretical side, a systematic effort has been 

devoted to pursue an accurate description of the elemen-

tary excitations of the system. The original idea of Feyn-

man–Cohen [6] of introducing back–flow correlations to 

improve variational excited states wave functions (later 

on extended by the correlated–basis–functions strategy 

[7]), has flown into the excited states shadow wave func-

tions (SWF) technique [8]; SWF reproduced the experi-

mental bulk dispersion relation ( )E q  up to a high accura-

cy level [9] and even confirmed [9,10] the physical 

picture of a roton as a microscopic smoke ring [11]. A 

further turn in the study of excited states of superfluid 
4
He was given by the advent of exact simulation methods 

for interacting Bose particles. It is not yet possible to per-

form a direct exact computation of excited states due to 

the sign problem. However, it is possible to extract dy-

namical properties from exact correlation functions in 

imaginary time [12]. This has been worked out by path 

integral Monte Carlo (PIMC) at finite temperature [13] or 

by ground state Monte Carlo [14,15] at T = 0 K. Indeed, 

such functions contain information on excited states of 

the system. In particular the density correlation function 

is related to ( , )S q  by an inverse Laplace transform. 

Due to discretization and statistical noise, the mathemati-

cal problem of extracting ( , )S q  is ill-posed, but power-

ful inversion methods have been introduced recently 

[15,16] and reliable results on the excitation spectrum of 

superfluid 
4
He have been obtained [15,17,18]. 

Bosons in two dimensions (2D) are of great theoretical 

interest because the standard scenario of superfluidity as-

sociated with Bose-Einstein condensation (BEC) is not 

appropriate. In fact, in 2D and in almost 2D systems the 

order parameter, i.e., the condensate wave function, ( ),r  

vanishes at any finite temperature for a bulk system. The 

notion of long range order is replaced by that of topologi-

cal long range order [19] with correlation function of the 

local order parameter decaying algebraically very slowly 

to zero. Notwithstanding a vanishing order parameter, a 

superfluid response is theoretically predicted up to a tem-

perature where vortex and antivortex pairs unbind. These 

predictions have been beautifully confirmed by experi-

ments [20]. Therefore a 2D Helium system is an interest-

ing microscopic model for quasi-two-dimensional many-

body quantum systems [21,22]: helium films on suitable 

substrates. For most substrates the interaction potential 

between the helium atoms and the substrate is much 

stronger (as it is the case of He–graphite interaction) than 

the He–He interaction and the helium atoms are adsorbed 

in a well-defined layer structure. Typically, only the first or 

the first two layers are strongly influenced by the details of 

the helium–substrate interaction. Several different physical 

realizations of substrates have been investigated, both in 

experimental and in theoretical works. For many substrates 

the closest He atoms to the substrate are disordered and 

localized, they form what the experimentalists call a 

“dead layer”. Beyond that the first layer of mobile atoms 

are superfluid and can be well represented by a strictly 

2D model. The experimental study of ( , )S q  of this film 

has shown the existence of elementary excitations with a 

phonon–maxon–roton structure [23]. A favorite substrate 

for adsorption studies is graphite because it offers rather 

extended regions of perfectly flat basal planes. At first 

sight this might be considered as an ideal situation for us-

ing the 2D model. This is not so for the first adsorbed layer 

because the adsorption potential is strongly corrugated. 

The consequence of the corrugation is that at low tempera-

ture the 
4
He atoms form an ordered structure, either a tri-

angular lattice that is commensurate with the substrate or, 

at higher coverage, an incommensurate triangular solid 

[24]. Experimentally no evidence has been found for su-

perfluidity in the first adsorbed layer on graphite. Super-

fluidity has been found only in additional layers for which 

the 2D model can be used as a reasonable approximation. 

Computation of the spectrum of elementary excitations 

of 
4
He is of interest on one hand to uncover the depen-

dence of rotons on the dimensionality of the system. On 

the other hand, this theoretical input is useful for the inter-

pretation of scattering experiments from adsorbed 
4
He. 

Excitations for 2D 
4
He have been studied by correlated 

basis function theory [25]. As far as we know, the only 

existing ab initio quantum Monte Carlo (QMC) calculation 

of excitations in 2D 
4
He has been performed with varia-

tional theory using shadow wave functions [26]. As men-

tioned above exact QMC techniques are able to give access 

to estimations of ( , )S q  via exact calculations of dynami-

cal correlation functions in imaginary time. The path 

integral ground state (PIGS) method [27] and in particular 

the shadow path integral ground state (SPIGS) method 

[28,29] together with the genetic inversion via falsification 

of theories (GIFT) method [15] have been applied to bulk 
4
He systems [15,17], to adsorbed 

4
He systems [18] and 

even to a pure 2D 
3
He system [30] (via a quite sophisti-

cated novel strategy). Here we apply such approaches to 

address the calculation of dynamical properties of a pure 

2D 
4
He system at zero temperature. 

The article is structured as follows: in the next section we 

sketch the methodology; in Sec. 3 we present and discuss 

the results and our conclusions are in Sec. 4. In the Appen-

dix we give the results of a variational computation of the 

ground state properties of 
4
He in 2D based on SWF that are 

a byproduct of the exact SPIGS computation of Sec. 3. 
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2. Methodology 

We focus thus on a strictly 2D collection of N  struc-

tureless spinless bosons at zero temperature. The hamil-

tonian operator is (1). We let 0 ( )  be the ground state 

of ˆ ,H  where we use the notation 1= ( , , ).Nr r . The 

basic relation underlying QMC projection methods is the 

following:  

 0
ˆ( ) exp( ) ( )lim TH  (3) 

where ( )T  is any many-body wave function with non-

zero overlap on 0 ( ) . The operator ˆexp( )H  can be 

seen as the evolution operator, ˆexp( ( / ) ),i t H  written for 

imaginary times; in this way, 0 ( )  turns out to be the 

limit of the imaginary time evolution of ( ),T  with  

playing the role of imaginary time. A Trotter decomposition: 

 
ˆ ˆ

e = (e ) , =H H M

M
 (4) 

together with an (analytical or numerical) approximation 

for the imaginary time propagator:  

 
ˆ

| e | = ( , , ) ( )H m  (5) 

where the order m  depends on the approximation, allows 

to build up an approximate expression for the ground state 

wave function of the form: 

0 1 1( ) { } ( , , ) ( , , ) ( )i M M T Md

  (6) 

where we have omitted an overall normalization factor. 

Any expectation value of an operator diagonal in coordi-

nate representation (or of the Hamiltonian operator): 

 0 0
ˆ| |O  (7) 

is expressed as a multidimensional average of a function 

( )O  over a probability density of the form: 

2

1 1 2

=1

1
({ }) = ( ) ( , , ) ( )

M

i T i i T M

i

p  (8) 

which can be sampled using Metropolis algorithm. The re-

sults can be considered exact in the sense that the errors aris-

ing from approximations can be reduced under the level of 

the statistical noise via a suitable choice of the time step  

and the total projection time = .M  Of course this also 

assumes that the results, for large enough ,  are indepen-

dent on the choice of .T  This has been verified [31], even 

by starting with T  of a liquid for the solid phase or of a 

solid for a liquid phase one finds convergence to the correct 

result. Notwithstanding this, a judicious choice of T  is 

important to accelerate convergence of T  to 0 ,  i.e., a 

smaller value of  is needed, and to reduce the variance of 

the results. What has been described here is the PIGS me-

thod, or the SPIGS method if T  is a SWF. 

This calculation scheme can be straightforwardly gene-

ralized to evaluate dynamical imaginary time correlation 

functions: 

 
ˆ ˆ †

0 0
ˆ ˆ| e e | .H HO O  (9) 

The particular choice: 

 
ˆ ˆ

0 0ˆ ˆ( , ) = | e e |H HF q qq  (10) 

provide the intermediate scattering function in imaginary 

time, which is related to the dynamical structure factor by 

the relation: 

 

0

( , ) = e ( , ).F q d S q  (11) 

Thus, the estimation of ( , )S q  requires to invert the 

integral relation (11) in ill-posed conditions, since ( , )F q  

is known only on a discrete and finite set of instants  

(typically = ,n  = 0, , )n n  and is affected by a sta-

tistical uncertainty arising from the stochastic Monte Carlo 

calculation. Despite the well-known difficulties related to 

the inversion of the Laplace transform in ill-posed condi-

tions, the evaluation of ( , )S q  starting from the QMC 

estimation of ( , )F q  (10) has been proved to be fruitful 

for several bosonic systems using a recent technique GIFT 

[15]. GIFT is a statistical inversion method: it samples a 

suitable space of spectral functions looking for models 

compatible with the QMC data ( , )F q  via a stochastic 

search scheme relying on genetic algorithms. 

3. Simulation details and results 

In our simulations of 
4
He in 2D we have used as intera-

tomic potential ( )v r  the 1979 Aziz potential [1] and N = 

= 120 number of atoms with periodic boundary conditions. 

As propagator ( , , )  we have used the pair–

product approximation [32] with =1/160  K
–1

, a value 

that we have verified to be small enough for the adopted 

propagator. As projection time  we have used =1.1  K
–1

 

and typical length of the simulation is 3 10
6
 Monte Carlo 

steps (MCS); ( , )F q  has been computed over the range 

(1–90) . A typical run starts from a triangular lattice con-

figuration which quickly “melts”, when the density is not 

too large, in few thousand MCS leading to disordered con-

figurations allowing to simulate the liquid phase without 

memory of the starting point. When the density is large 

enough the system remains in an ordered state as shown by 

the presence in the static structure factor ( )S q  of sharp 

Bragg peaks corresponding to triangular solid 
4
He. Only in 

the density range of the liquid–solid transition one gets 

convergence to two different states depending on the initial 

configuration: starting from a disordered configuration the 

system remains disordered whereas it remains ordered 

when started from the ordered configuration. The energies 
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of the two states take different values, the lowest one 

represents the stable phase and the higher energy one 

represents a metastable state for a single phase state. 

The average value of the hamiltonian operator as a 

function of the density provides the equation of state of the 

system. We have computed the energy in a quite large 

range of densities both in the liquid and in the solid phase 

and the results are shown in Fig. 1 and listed in Tables 3 

and 4 of the Appendix. The SPIGS results agree within the 

statistical uncertainty with the result of a Green function 

Monte Carlo (GFMC) computation [21]. One can also see 

that the SWF variational results follow quite closely the 

exact SPIGS results both in the liquid and in the solid 

phase, thus confirming the accuracy of the SWF as in the 

3D case. In order to determine the melting and freezing 

densities, the energies have been fitted with a third degree 

polynomial in density in the solid phase, and a fourth de-

gree polynomial in the liquid phase. We write the fitting 

function as  

2 3 4

0 0 0
0

0 0 0

( ) =lE E A B C (12) 

in the liquid phase, where a minimum energy 0E  at the 

equilibrium density 0  is present. The last term, which is 

not typical in literature, turned out to be necessary in order 

to obtain a good fit in the whole density range here consi-

dered. On the other hand, in the solid phase we use the 

expression: 

 2 3( ) = .sE  (13) 

The obtained fitting parameters, together with their statis-

tical uncertainties, are listed in Table 1 of the Appendix. 

The interpolation curves, depicted in Fig. 1, are truncated 

in the coexistence region, delimited by the melting and 

freezing densities m  and .f  m  and f  have been 

estimated using the Maxwell construction, and they are 

given in Table 2 of the Appendix. 

In Fig. 2 we show some quantities like the pressure p, 

the chemical potential , the compressibility ,  and the 

sound velocity sv  in the liquid and in the solid phase; such 

quantities have been obtained from 0( )E  via the expres-

sions: 

2 0 ( )
( ) = ,

E
p  0( ) = ( ) ( )/ ,E p  

1
( )

( ) =
p

 and 2 0 ( )1
( ) =s

E
v

m
. 

In the solid phase sv  represents the velocity of the lon-

gitudinal sound mode. 

In Fig. 3 we show the SPIGS result for the static struc-

ture factor 0 0ˆ ˆ( ) = | |S q q q  for a density close to 

the equilibrium one and at a density close to freezing. It is 

evident the emergence of more structure as the density 

increases towards the freezing density. Moreover, we em-

phasize the linear behavior of ( )S q  for 0q  which ma-

nifests itself at very small wave vectors. This is due to the 

zero–point motion of long wavelength phonons [33]. 

Fig. 1. Variational energies in the liquid () and in the solid () 

phase. Exact energies in the liquid () and in the solid () phase. 

The curves are the interpolated equations of state, and are trun-

cated in the coexistence region. 

Fig. 2. Thermodynamical properties derived from the equation of 

state as functions of the density; liquid phase (solid line); solid 

phase (dashed line): pressure p (a); chemical potential  (b); 

compressibility (c); sound velocity sv (d). 
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We have computed the dynamical correlation functions 

for imaginary time ( , )F q  at six densities, and namely 

0.0321, 0.0421, 0.04315, 0.049, 0.0536, and 0.0658 Å
–2

 in 

the liquid phase. From ( , ),F q  the GIFT method allows to 

reconstruct the dynamical structure factor of the sample, 

( , )S q . An example of ( , )F q  and of the reconstructed 

( , )S q  is shown in Fig. 4. ( , )S q  in general has a sharp 

peak in  and this defines the energy ( )E q  of the excita-

tion for the given wave vector q. In addition there is a 

much broader peak at larger energy and this represents the 

so-called multiphonon contribution to ( , ).S q  The ele-

mentary excitation peak in the reconstructed ( , )S q  has a 

finite width. This width can have two different origins. As 

discussed in Ref. 15, even if the system has an infinitely 

long-lived excitation the peak in the reconstructed ( , )S q  

has a finite width because the inversion method can only 

identify the excitation energy with a certain uncertainty 

due to the limited and noisy information on ( , ).F q  In this 

case the full width at half maximum (FWHM) can be taken 

as a measure of statistical uncertainty of the excitation 

energy. Under certain circumstances even at T = 0 K an 

elementary excitation acquires a finite lifetime when it can 

decay into two or more excitations. This happens, for in-

stance, for the maxon excitation in superfluid 
4
He in 3D at 

large pressure when the maxon energy is larger than twice 

the roton energy. In this case the excitation peak has an 

intrinsic finite linewidth and its FWHM is a measure of the 

inverse life-time of the excitation. Under such circums-

tances we expect that the width of the reconstructed 

( , )S q  has also a contribution of intrinsic origin due to 

such physical processes, even if it is difficult to quantify 

precisely how large this intrinsic contribution is from the 

overall FWHM. 

Fig. 3. SPIGS estimations of the static structure factor ( )S q  () 

and strenght of the single particle peak ( )Z q  () at the different 

densities , Å
–2

: 0.04315 (a), 0.0536 (b), and 0.0658 (c). 

Fig. 4. An example of QMC evaluation of an imaginary time 

correlation function ( , ),F q  defined in (10). We have plotted the 

-dependence of ( , )F q  for a given wave vector q (see the le-

gend) in logarithmic scale to show the asymptotic single expo-

nential behavior governed by the elementary excitation energy 

(a). Reconstructed ( , ):S q  one can see the sharp elementary 

excitation peak together with the higher energy broad multipho-

non contribution (b). 
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The integral over all  of ( , )S q  is equal to the static 

structure factor ( ).S q  An important information is con-

tained in the strength ( )Z q  of the elementary excitation 

peak, i.e., the integral of ( , )S q  limited to the main peak. 

The ratio ( )/ ( )Z q S q  gives the probability that in the scat-

tering process there is emission of a single elementary ex-

citation whereas 1 ( )/ ( )Z q S q  gives the probability of 

emission of other excitations, the so-called multiphonon 

processes. The behavior of ( )Z q  is shown in Fig. 3 at 

three densities. 

In Fig. 5 we show the obtained dispersion relation 

( )E q  for four values of the density. The reported bar 

represents the FWHM of the main peak in ( , ).S q  

At the lowest density, 0.0321 Å
–2

, which is near the 

spinodal decomposition, the excitation spectrum shows a 

large flat region, and a very weak roton minimum. At small 

wave vector the spectrum shows an anomalous dispersion, 

i.e., a positive curvature. At the density 0 = 0.04315 Å
–2

 

close to equilibrium the phonon–maxon–roton structure 

starts to be visible but maxon energy does not differ by 

more than 10% with respect to the roton energy. As the 

density further increases the maxon–roton region becomes 

more and more prominent until, at the highest density 

0.0658 Å
–2

, near the freezing point, the maxon energy is 

about three times the roton energy. At the larger density 

the peaks in the maxon region are quite broadened, as it is 

evident from the error bars in Fig. 5; we believe that in 

this case the linewidth largely represents an intrinsic effect 

due to the fact that a maxon can decay into two rotons 

because its energy is more than twice the roton energy. 

This fact is known experimentally [34] and theoretically 

[9,10] in 3D superfluid 
4
He at density in the region of 

freezing. In Fig. 6 we plot the energy and the wave vector 

of roton and of maxon as function of density. It can be 

noticed that the roton energy in 2D (from 5.5 to 3.8 K 

depending on density) is significantly below the value in 

3D (from 8.6 K at equilibrium to 7.2 K at freezing densi-

ty). It can also be noticed that the roton wave vector has a 

significant density dependence while the maxon wave 

vector is almost density independent. 

In Fig. 5 we show also the Feynman spectrum, 
2 2( ) = /2 ( ),FE q q mS q  obtained using our estimation of 

( ).S q  Feynman dispersion relation is accurate, as it is well 

known, only in the low-wave vectors region. The discre-

pancy between ( )E q  and ( )FE q  increases with the densi-

ty: ( )FE q  is more than twice ( )E q  near the freezing 

point. We notice also that the present ( )E q  is in good 

agreement with the variational result at the equilibrium 

density obtained using SWF in Ref. 8. At larger density the 

variational roton energy is about 1 K above the present 

result. In Fig. 7 we show more details about the low q  

behavior of the dispersion relation at four considered den-

sities. It is apparent that the phononic dispersion is superli-

near for the two lowest densities, and becomes sublinear at 

larger densities up to the freezing point. This is qualitative-

ly similar to what happens in superfluid 
4
He in 3D. 

With respect to the strength of the quasiparticle peak 

( ),Z q  at all densities ( ) ( )Z q S q  at small q, i.e., the col-

lective excitation peak almost exhausts the f-sum rule and 

multiphonon contributions are negligible. At equilibrium 

density the roton peak has about 2/3 of the full integrated 

intensity and 1/3 is due to multiphonon contribution. This 

multiphonon contribution is larger than in 3D and we 

attribute this to the fact that equilibrium density in 2D is 

Fig. 5. Excitation spectrum from GIFT reconstructions of SPIGS evaluations of imaginary time correlation functions in the liquid phase 

(), together with Feynman spectrum (), at four densities as shown in the legends. 
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rather low where short range order is not very pronounced. 

Only near freezing the multiphonon contribution of the 

roton is small (of order of 20%) as in 3D superfluid 
4
He. 

Studies of the elementary excitations of 
4
He in re-

stricted geometry have been performed by inelastic neutron 

scattering on 
4
He confined in a number of nanopore mate-

rials. Of special relevance is a recent study [35] of 
4
He in 

smooth cylindrical silica pores of diameter of about 28 Å. 

When the pores are filled with 
4
He experiment shows the 

presence of phonon–maxon–roton excitations with a dis-

persion relation very similar to that of bulk 
4
He. Such exci-

tations are interpreted as propagating in the central part of 

the pore. An additional roton excitation at smaller energy 

is present and this is interpreted as roton confined in a 

compressed layer close to the cylinder wall. When the 

pores are only partially filled with 
4
He the compressed 

layer rotons are still present, whereas the bulk-like pho-

non–maxon–roton branch disappears. In its place there is a 

modified phonon–maxon–roton brach with a decreased 

energy of the maxon (11 K instead of 14 K in the bulk) and 

a roton energy only 2 K below the maxon (the energy dif-

ference beyween maxon and roton in bulk 
4
He is about 5 K 

at equilibrium density). In addition this new roton is found 

at a shifted wave vector, at 1.78 Å
–1

 in place of 1.92 Å
–1

 

of the bulk one. This modified maxon–roton branch has 

been interpreted as propagating in a thin film inside the 

unfilled pore and connection has been made with the exci-

tations in 2D 
4
He as computed in Ref. 26. Indeed some 

similarity between the dilute layer modes of experiment 

and the present results for 
4
He in 2D is present, such as 

the reduced energy difference between maxon and roton 

and a reduced wave vector .Rq  On the other hand, some 

significant difference is present. For instance, we find 

1.75Rq  Å
–1

 at a density close to freezing but here the 

roton energy is about 4 K, less than half the value of the 

dilute layer mode. Of course there is a difference between 

the present mathematical 2D system and the finite curva-

ture of the 
4
He film in an unfilled pore of the experiment. 

It is unclear if this might be the origin of that difference 

for the roton energy. 

Finally, we obtained from the –1-moment of ( , )S q  

also the static density response function, ( ),q  which is 

shown in Fig. 8. As in 3D ( )q  is dominated by a peak at 

the roton wave vector. One can notice that at the equili-

brium density ( )q  has an enhancement at small q which 

is absent in 3D [15]. This is another manifestation that the 

ground state of 
4
He in 2D is at low density where atoms 

are not strongly coupled as in 3D. 

Fig. 6. Density dependence of the wave vector and of the energy 

of the maxon ( ,Mq ( ))ME q  and the roton ( ,Rq ( ))RE q  modes. 

Lines are guides to the eye. 

Fig. 7. Small wave vectors behavior of the estimated dispersion 

relation ( )E q  for the different densities , Å
–2

: 0.0321 (), 

0.04315 (), 0.0536 () and 0.0658 (). The dotted straight lines 

represent the linear behavior from which the ( )E q  significantly 

deviate. 

Fig. 8. Density response function extracted from the dynamical 

structure factor at the different densities , Å
–2

: 0.04315 (), 

0.0536 () and 0.0658 (). 



F. Arrigoni, E. Vitali, D.E. Galli, and L. Reatto 

1028 Low Temperature Physics/Fizika Nizkikh Temperatur, 2013, v. 39, No. 9 

4. Conclusions 

We have presented the first ab initio QMC computation 

of the excitation spectrum of superfluid 
4
He in 2D starting 

from exact density correlation functions in imaginary time 

and using advanced inversion methods to infer the dynam-

ical structure factor ( , ).S q  We find well defined excita-

tions in the full density range of the superfluid but signifi-

cant differences are present with respect to 
4
He in 3D. In 

3D the excitation spectrum over the full density range from 

the equilibirum density to the freezing one has a well de-

fined phonon–maxon–roton structure with the maxon 

energy ME  larger by at least 50% than the roton energy 

R . In 2D the excitation spectrum evolves with density 

from maxon and roton almost coaleshing in a plateau at 

density close to the spinodal to a well defined maxon–

roton structure at density above the equilibrium one with 

/M RE  becoming as large as 3 at freezing. At the same 

time the wave vector Rq  of the roton has a strong density 

dependence whereas that of the maxon is almost density 

independent. This strong evolution with density of the 

shape of the excitation spectrum is due to the large density 

range of existence of the fluid in 2D, the freezing density is 

more than twice the spinodal density while in 3D the freez-

ing density is only 60% larger than the spinodal one. At the 

2D equilibrium density the maxon–roton structure is rather 

weak with the maxon energy only 10% larger than the ro-

ton energy. This is due to the low value of the equilibrium 

density so that the amount of short range order is rather 

small. At the same time in the phonon region there is a 

strong anomalous dispersion (i.e., ( )E q  has a positive cur-

vature). As a consequence of the shape of ( ),E q  over an 

extended region of q  and of density, the elementary excita-

tions are expected to have a finite lifetime even at T = 0 K, 

because they can decay into other excitations. We find 

evidence for this finite lifetime from our computation but 

the present method does not allow to quantify this. 

It has been suggested [35] that the excitation spectrum 

of 2D 
4
He might be relevant for the interpretation of the 

excitations of 
4
He partially filling smooth cylindrical silica 

pores as measured by inelastic neutron scattering. We in-

deed find some similarity between our results and the ex-

perimental ones. However we find a strong disagreement 

in the value of the roton energy which is well beyond the 

uncertainty of the present theory. This discrepancy might 

be due to a curvature effect that is present in the pore but 

not in the present computation. It will be interesting to ex-

tend the present computation to the case of a pore geome-

try; present developments of QMC techniques are such that 

this is a feasible project. 
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Appendix 

In Tables 1 and 2 we give the fitting parameters of the 

energy as function of density with expressions (12) and (13). 

In our implementation of the QMC projection tecnhique, as 

T  we use a SWF. Such a wave function, introduced by 

Vitiello et al. [36], is known to provide a very accurate de-

scription of the condensed phases of 
4
He [37]: it has explicit 

pair correlations between the coordinates of the atoms as 

well as indirect many-body correlations via some auxiliary 

shadow variables, denoted 1= ( , , ),Ns s  which are in-

tegrated over: 

 2

< <

( ) = exp ( ) ( ) | | .
N N N

T r ij s ij i i
i j i j i

u r v s c dr s   

  (A.1) 

The pseudo-potentials are chosen to be a generalized 

McMillian form ( ) = ( / ) ,m
r ij iju r b r  whereas the one for the 

shadow variables is chosen of the Aziz rescaled form 

( ) = ( ).s ij ijv s v s  This SWF has the same form used by 

Grisenti and Reatto [26] but as power m we have used m = 6 

because this values improves the energy compared to m = 5 

used in [37]. We have optimized the trial wave function 

(A.1) varying the remaining variational parameters b, ,  

and c through variational Monte Carlo simulations for vari-

ous densities. Notice that the form of T  is the same for the 

liquid and for the solid, only the variational parameters take 

different values. The optimized SWF is used as trial wave 

function for exact simulations at the same densities: the ex-

act technique is named SPIGS method [28,29]. 

 

Table 1. Values of the fit parameters for fitting functions (12) 

and (13) of the variational equation of state 

E0, K –0.753(3) , K  –15.2 28% 

0, Å
–2

 0.0393(2)  , K Å
2
 765 20% 

A, K 1.39(6) , K Å
4
 –13311 13% 

B, K 0.7(3) , K Å
6
 80497 8.5% 

C, K 0.93(15)   

f, Å
–2

 0.0677 m, Å
–2

 0.0721 

 

Table 2. Values of the fit parameters for fitting functions (12) 

and (13) of the exact equation of state 

E0, K –0.862(1) , a.u. –25.1  

0, Å
–2

 0.0430(1)  , K Å
2
 765 20% 

A, K 2.00(3) , K Å
4
 –13311 13% 

B, K 2.1(1) , K Å
6
 80497 8.5% 

C, K 0.52(14)   

f, Å
–2

 0.0674 m, Å
–2

 0.0701 

 



Excitation spectrum in two-dimensional superfluid 
4
He 

Low Temperature Physics/Fizika Nizkikh Temperatur, 2013, v. 39, No. 9 1029 

For reference purpose we give the optimal values of the 

SWF variational parameters in Tables 3 and 4 for the liq-

uid and solid phases, respectively. The values of the exact 

and of the variational energy are also given in that tables. 
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