9,516 research outputs found

    Entanglement Scrambling in 2d Conformal Field Theory

    Get PDF
    We investigate how entanglement spreads in time-dependent states of a 1+1 dimensional conformal field theory (CFT). The results depend qualitatively on the value of the central charge. In rational CFTs, which have central charge below a critical value, entanglement entropy behaves as if correlations were carried by free quasiparticles. This leads to long-term memory effects, such as spikes in the mutual information of widely separated regions at late times. When the central charge is above the critical value, the quasiparticle picture fails. Assuming no extended symmetry algebra, any theory with c>1c>1 has diminished memory effects compared to the rational models. In holographic CFTs, with c1c \gg 1, these memory effects are eliminated altogether at strong coupling, but reappear after the scrambling time tβlogct \gtrsim \beta \log c at weak coupling.Comment: 52 pages, 7 figure; v2: references adde

    Post-T Tauri stars: a false problem

    Get PDF
    We consider the problem of the apparent lack of old T Tauri stars in low-mass star forming regions in the framework of the standard model of low-mass star formation. We argue that the similarity between molecular cloud lifetime and ambipolar diffusion timescale implies that star formation does not take place instantaneously, nor at a constant rate. We conclude that the probability of finding a large population of old stars in a star forming region is intrinsically very small and that the post-T Tauri problem is by and large not existent.Comment: 6 pages (LaTeX), no Figures to be published in The Astrophysical Journal Letter

    On the Estimation of Euler Equations in the Presence of a Potential Regime Shift

    Get PDF
    The concept of a peso problem is formalized in terms of a linear Euler equation and a nonlinear marginal model describing the dynamics of the exogenous driving process. It is shown that, using a threshold autoregressive model as a marginal model, it is possible to produce time-varying peso premia. A Monte Carlo method and a method based on the numerical solution of integral equations are considered as tools for computing conditional future expectations in the marginal model. A Monte Carlo study illustrates the poor performance of the generalized method of moment (GMM) estimator in small and even relatively large samples. The poor performance is particularly acute in the presence of a peso problem but is also serious in the simple linear case.peso problem; Euler equations; GMM; threshold autoregressive models

    Self-Regulation of Star Formation in Low Metallicity Clouds

    Get PDF
    We investigate the process of self-regulated star formation via photodissociation of hydrogen molecules in low metallicity clouds. We evaluate the influence region's scale of a massive star in low metallicity gas clouds whose temperatures are between 100 and 10000 Kelvin. A single O star can photodissociate hydrogen molecules in the whole of the host cloud. If metallicity is smaller than about 10^{-2.5} of the solar metallicity, the depletion of coolant of the the host cloud is very serious so that the cloud cannot cool in a free-fall time, and subsequent star formation is almost quenched. On the contrary, if metallicity is larger than about 10^{-1.5} of the solar metallicity, star formation regulation via photodissociation is not efficient. The typical metallicity when this transition occurs is about 1/100 of the solar metallicity. This indicates that stars do not form efficiently before the metallicity becomes larger than about 1/100 of the solar metallicity and we considered that this value becomes the lower limit of the metallicity of luminous objects such as galaxies.Comment: 14 pages, including 5 figures, To appear in ApJ, Vol. 53

    Nonaxisymmetric Evolution of Magnetically Subcritical Clouds: Bar Growth, Core Elongation, and Binary Formation

    Get PDF
    We have begun a systematic numerical study of the nonlinear growth of nonaxisymmetric perturbations during the ambipolar diffusion-driven evolution of initially magnetically subcritical molecular clouds, with an eye on the formation of binaries, multiple stellar systems and small clusters. In this initial study, we focus on the m=2m=2 (or bar) mode, which is shown to be unstable during the dynamic collapse phase of cloud evolution after the central region has become magnetically supercritical. We find that, despite the presence of a strong magnetic field, the bar can grow fast enough that for a modest initial perturbation (at 5% level) a large aspect ratio is obtained during the isothermal phase of cloud collapse. The highly elongated bar is expected to fragment into small pieces during the subsequent adiabatic phase. Our calculations suggest that the strong magnetic fields observed in some star-forming clouds and envisioned in the standard picture of single star formation do not necessarily suppress bar growth and fragmentation; on the contrary, they may actually promote these processes, by allowing the clouds to have more than one (thermal) Jeans mass to begin with without collapsing promptly. Nonlinear growth of the bar mode in a direction perpendicular to the magnetic field, coupled with flattening along field lines, leads to the formation of supercritical cores that are triaxial in general. It removes a longstanding objection to the standard scenario of isolated star formation involving subcritical magnetic field and ambipolar diffusion based on the likely prolate shape inferred for dense cores. Continuted growth of the bar mode in already elongated starless cores, such as L1544, may lead to future binary and multiple star formation.Comment: 5 pages, 2 figures, accepted by ApJ

    Cosmic rays 10Be biennal data and their relationship to aurorae and sunspots

    Get PDF
    The galactic cosmic ray (C.R.) variations which should give information on three dimensional aspects of the heliospheric magnetic fields and on the solar wind, which modulate their influx into the Solar System were studied. In order to decode the information from the C.R. series it is necessary to know the mechanisms through which the modulation is produced. It it clear that a balance of effects with sources at different heliospheric latitudes results in the modulated C.R. intensity. It is found that the modulation of 10Be in polar ice may be due to at least two main contributions: (1) negative and in phase with the Solar flare activity modulating the cosmic ray flux in Forbush-type decreases, and (2) positive in phase with the appearance of large wind streams situated at both polar coronal holes. It is found that the high heliolatitude activity is related to a stable periodicity of 11.1y whereas the low heliolatitude activity contributes to the wondering of the solar cycles

    Cosmic ray secular variations in terrestrial records and aurorae

    Get PDF
    The rediscovery that the Sun and the solar wind can undergo important changes on historical time scales has brought into question the stability of the cyclic behavior of past time series of solar and solar-terrestrial origin. It was found by Vector Fourier analysis that the solar 11 year cycle is present in the series of 10Be, delta 180, in ice cores and of thermoluminescence (TL) in sea sediments during the last Millennia with a frequency modulation, related to the Sun behavior, as tested by comparison with the Sunspot number R sub z series. It was shown that the cyclogram of the series of yearly Aurorae from 1721 to 1979 linear-regression-corrected-for-R sub z is straight for the periodicity zeta=11,1y, which indicates that such periodicity is constant in time corresponding to the only line present in the 11y band. The maxima of this component appear at the same time together with the high speed solar wind streams taking place in coronal holes situated in high heliolatitudes. It is evidenced that the 11 year cycle has undergone frequency oscillations on a time scale of two centuries, although it is very difficult to determine the periodicities with high accuracy
    corecore