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1 Introduction

How does quantum information spread in a strongly coupled system, far from equilibrium?

This question is central to the dynamics of a wide variety of experimental and theoretical

systems, from cold atoms and condensed matter to quantum chaos and black holes (see for

example [1–7] and [8–14]).

Quantum information is encoded in entanglement, so a useful way to characterize its

spread is through the time-dependent entanglement entropy of spatial subsystems. In this

paper, we investigate this quantity in 1+1d critical systems, in time-dependent states which

have only short-range correlations at time t = 0. These states model a global quench from

a gapped Hamiltonian.

The entanglement entropy of a single, connected region in this context was computed

by Calabrese and Cardy using conformal field theory (CFT) [15–17]. In the limit where the

time t and size L of the interval are much larger than the initial correlation length ξ, the
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time
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Figure 1. (a) Quasiparticle picture for the entanglement entropy of two disjoint intervals. Entan-

gled pairs are created at t = 0, which propagate in opposite directions at the speed of light. When

one of the particles enters A and the other enters B, the entanglement entropy SA∪B decreases.

(b) Memory effect in the entanglement entropy of two separated intervals after a global quantum

quench. For intervals of size L separated by a distance D > L, the dip is centered at t = (D+L)/2

and extends over the range D/2 < t < D/2 +L. The solid line is the free quasiparticle answer, and

the dashed line is the holographic answer.

result is fixed universally by conformal symmetry, and depends only on the central charge

c of the CFT. It is equal to c times the answer for a free boson. This can be modeled by

assuming that entanglement is carried by free quasiparticles, propagating ballistically at

the speed of light.

The entanglement entropy of disjoint regions is a more detailed probe of how infor-

mation spreads. We focus on the case of two disjoint intervals A and B. In this case the

mutual information I(A,B) = SA + SB − SA∪B bounds the strength of connected correla-

tion functions of smeared local operators in the two regions [18]. Our main result is that

the entanglement entropy SA∪B(t) is not universal in general, but depends qualitatively

on the value of the central charge: it interpolates between the free quasiparticle answer for

small c, and the holographic prediction of three-dimensional quantum gravity at large c.

Free quasiparticles vs. quantum gravity. Suppose the regions A and B both have

length L and are separated by a distance D > L, as in figure 1a. In a theory of free

quasiparticles, the entanglement entropy SA∪B(t) is shown in figure 1b. After the quench, it

grows linearly as entangled pairs spread, and saturates at the thermal value for temperature

β ∼ ξ. At t = D/2, entangled pairs created in the middle enter the two regions, as shown

in figure 1a, leading to a dip in SA∪B and a corresponding spike in the mutual information.

At the midpoint of the dip, the left-moving quasiparticles in region A are maximally

entangled with the right-moving quasiparticles in region B, so SA∪B is exactly half the

thermal value (after subtracting the divergent contribution at t = 0). In this scenario,

maximally entangled degrees of freedom remain maximally entangled even as they propa-

gate to very large separation. In other words, entanglement does not scramble.

– 2 –
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It was claimed in [15, 17] that the free quasiparticle behavior for multi-interval entan-

glement after a global quench is universal to all conformal field theories. This is surprising

in a strongly coupled system, and we will argue that an assumption underlying this claim

(about the analytic continuation of certain Euclidean correlators to Lorentzian signature)

is justified only in a restricted class of theories with a large degree of symmetry. A first hint

of this was provided by holographic calculations of entanglement entropy [19–21], where,

even in 1+1 dimensions, entanglement scrambles maximally — late time features in the en-

tanglement entropy of widely separated subsystems, such as the dip in figure 1b, are entirely

absent. This apparent discrepancy was first observed in [19] and has also been explored

in [22]. Our aim is to reconcile these two pictures, and to understand the middle ground.

Results. We argue that, in fact, the scrambling of entanglement is generic in 1+1d

conformal field theory: scrambling occurs whenever the central charge is greater than a

critical value depending on the number of conserved currents. In a CFT without extended

chiral symmetry, the stress tensor and its descendants are the only conserved currents, and

entanglement scrambles if and only if c > 1. More generally, we define an effective central

charge ccurrents for the chiral sector of the theory, and find that entanglement scrambles

when c > ccurrents.

The quasiparticle picture is accurate in theories with c = ccurrents. These include the

rational CFTs, as well as some non-rational theories like the compact boson at irrational

radius squared. We refer to this class of theories as current dominated, for the following

reason. Denoting the density of states by Ω(h, h̄), where (h, h̄) are the left and right

conformal weights, c = ccurrents implies

Ω(h, h̄) ≈ Ω(h, 0)× Ω(0, h̄) as h, h̄→∞ . (1.1)

That is, the spectrum of high-dimension operators is dominated by conserved currents,

which have dimension (h, 0) or (0, h̄). Correlators in such theories also factorize into left

and right moving contributions, in a stronger sense than in general CFTs.

The opposite extreme is a holographic CFT, which has ccurrents ∼ 1 and c � 1, and

scrambles maximally. We recover this universal answer directly from our CFT analysis in

the holographic limit. Theories with c > ccurrents, but where c is not large, also scram-

ble, but the entanglement entropy in these theories is not universal. These intermediate

theories are not rational, so they cannot be solved exactly, and perhaps for this reason

have received much less attention in the literature than rational CFTs. They are, however,

perfectly normal, unitary quantum field theories, with a moderate central charge, a unique

normalizable vacuum state, and a discrete spectrum when placed in finite volume. Such

CFTs with c > ccurrents are much like their higher-dimensional cousins, since rational CFTs

do not exist in d > 2. They have an infinite but discrete set of primary fields. An example

is a sigma model with a compact target space that has no isometries (or few isometries).

Such a theory does not have the large quasiparticle dip shown in figure 1, even in the

scaling limit where times and lengths are much greater than the initial correlation length.

An explicit example with c = 12 is discussed in section 5.

– 3 –
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The evidence for these claims is strong but not entirely conclusive. It follows from

calculations of the Rényi entropies Sn in conformal field theory, which are related to the

entanglement entropy by extrapolating n → 1. We consider two models for a quantum

quench: the boundary state model of Calabrese and Cardy [15–17], and the thermal double

model of Hartman and Maldacena [14]. In the thermal double model, we show that the S2

Rényi entropy behaves precisely as claimed, and argue (somewhat incompletely) that the

same applies for all Sn. Thus the evidence for scrambling in this model is very strong. In

the boundary state model, our conclusions hold as long as boundary states in non-rational

conformal field theory do not, for some unknown reason, produce a spurious singularity

in correlation functions, beyond the usual singularities required by the operator product

expansion, and the additional singularities from image points across the boundary. This

assumption is unproven but seems likely without evidence to the contrary, so we suspect

that our conclusions hold also for boundary states. We therefore disagree with the claim

in [15, 17, 23] that the quasiparticle picture for multiple-interval entanglement entropy after

a quench is entirely universal — the derivation implicitly assumes that the theory is current

dominated. The differences appear only for multiple intervals after a quench, or certain

configurations of highly boosted intervals in vacuum, so the results for a single interval

are unaffected. Similar differences would appear in the calculation of n-point correlation

functions of local operators after a quench [24], but only for n > 2.

We emphasize that our conclusions hold in the scaling limit where length and time

scales are much larger than the correlation length in the initial state (as in [15–17]). The

scaling limit is taken with c held fixed, and we assume c is large only when stated explicitly

in section 4. In holographic theories, there is an additional consideration since we must

take both the large-c limit and the scaling limit. This order of limits is not the origin of

the discrepancy between holographic and rational CFTs. The interplay between the scal-

ing limit and the large-c limit is addressed in section 4.4. At strong coupling, assuming a

sparse spectrum of low-dimension operators, the conformal field theory answer reproduces

the holographic prediction for mutual information after a global quench. In weakly cou-

pled CFT, it leads to a quantitative prediction for stringy corrections to the holographic

entanglement result.

Outline. The Calabrese-Cardy boundary state model for a global quench, and the re-

lated technology of twist correlation functions in CFT, is reviewed in sections 2.1–2.2. In

section 2.3, we show that around the time of the dip in the quasiparticle entanglement

entropy, the behavior of the Rényi entropies is controlled by a light cone singularity in the

twist correlator, and that this singularity is not fixed by the ordinary operator product

expansion.

The aim of section 3 is to understand the nature of this light cone singularity. First, we

relate it to a technically simpler question about the mutual information of offset intervals in

a thermal double CFT. In this setting, in section 3.3 we compute the singularity in the S2

Rényi entropy by conformally mapping the replica geometry to the torus partition function

and give a definition of ccurrents. Based on properties of the spectrum in rational (or nearly

rational) vs non-rational CFT, we conclude that the quasiparticle picture produces the
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correct S2 only for central charge c below a critical value. In section 3.4 we attempt to

extend this to general Rényi index n, but only partially succeed. Section 3.5 is devoted to

the marginal case of the c = 1 free boson, and the question of whether the dip gets larger

or smaller is addressed in section 3.6.

In section 4 we explore the large c holographic limit. The gravity calculations of mutual

information and second Rényi entropy after a global quench are sketched in sections 4.1–4.2;

these are reproduced from CFT (with some extra assumptions) in 4.3; and the weakly

coupled limit of a particular holographic CFT, the D1-D5 symmetric orbifold, is considered

in section 4.4.

In the conclusions, we briefly comment on several open questions and possible exten-

sions of these results, including local quenches and entanglement negativity.

2 Origin of entanglement memory

Consider a 1+1d CFT, in an initial pure state |Ψ〉 with a finite correlation length ξ and

finite energy density. This state may be produced, for example, by globally quenching the

Hamiltonian of a gapped system to a critical point. At time t = 0, regions of size L � ξ

exhibit area-law entanglement. The state is time dependent, and since it has finite energy

density, we may expect it to exhibit volume-law entanglement for a single interval at late

times. This was beautifully demonstrated in [15–17].

A more detailed probe of entanglement in this system is the entanglement entropy or

mutual information of separated intervals. Define the regions

A : x ∈ [0, L], B : x ∈ [D + L,D + 2L] . (2.1)

To simplify the discussion we will always assume

t > 0, D > L , (2.2)

and only comment on the case D < L in the conclusions.

The entanglement entropy SA∪B does not measure the entanglement of A with B, but

rather the entanglement of A ∪ B with the rest of the system — if A and B are highly

entangled with each other, then they cannot be highly entangled with degrees of freedom

elsewhere, so SA∪B is small. It is UV divergent, but the divergence is time-independent,

and could be removed entirely by considering instead the mutual information

I(A,B) = SA + SB − SA∪B . (2.3)

Two possible behaviors of the entanglement entropy as a function of time are illustrated

in figure 1. The linear rise at early times comes from correlations spreading until t ∼ L/2.

The dip, when it exists, can be understood as coming from entangled degrees of freedom

that started at the midpoint between the two intervals, with left-movers entering region A

and right-movers entering region B around t ∼ D/2. When there is a dip in SA∪B, there

is a corresponding peak in the mutual information.

In this section we will setup the calculation of the entanglement entropy, follow-

ing [15–17], and isolate the part of the computation responsible for the dip around t ∼ D/2.

– 5 –
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2.1 Review of the boundary state model

The experiment just described is in a particular pure state, |Ψ〉. We cannot hope to capture

the exact details of an arbitrary pure state, but it was argued by Calabrese and Cardy that

the behavior of the entanglement entropy (and correlation functions) for t, L,D � ξ is

universal. The universal features of |Ψ〉 are captured by the state

|Φ〉 = e−βH/4|B〉 (2.4)

where |B〉 is a conformal boundary state, H is the CFT Hamiltonian, and β ∼ ξ. The

boundary state |B〉 is not normalizable, but evolution in Euclidean time spreads out cor-

relations and renders the state normalizable.

Entanglement entropy in the state |Φ〉 can be computed by the replica method. Define

the Rényi entropy

Sn =
1

1− n
log Tr ρn , (2.5)

where ρ is the reduced density matrix of a subregion, and n ≥ 2 is an integer. The

entanglement entropy S = − tr ρ log ρ is obtained by analytic continuation in n→ 1.

Twist correlators. In the state (2.4), the Rényi entropy can be computed by a path

integral. For the region A∪B defined above, matrix elements of ρA∪B at t = 0 are computed

by the path integral on an infinite strip:

〈ϕ′|ρA∪B|ϕ〉 = , (2.6)

where ϕ and ϕ′ denote states on region A∪B. Reading this diagram from bottom to top,

the boundary condition at the bottom defines the state |B〉, the Euclidean time evolution

over the bottom half of the strip produces e−βH/4|B〉, and the path integral over the upper

half corresponds to 〈B|e−βH/4.

The replica partition function Tr ρnA∪B is computed by the path integral on n copies

of this system, glued along region A ∪B:

Tr ρnA∪B =
1
2

2
3

n
1

1'
2'

2'
3'

n'
1' , (2.7)

with slits identified as indicated by the numbers 1 . . . n, 1′ . . . n′. This is a path integral on

a Riemann surface with n−1 handles, and n holes where we impose boundary condition B.

– 6 –
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It can also be viewed as a correlation function of twist operators on a single sheet,

Tr ρnA∪B ∼ Istrip
n ≡ 〈σ(z1, z̄1)σ̃(z2, z̄2)σ(z3, z̄3)σ̃(z4, z̄4)〉strip , (2.8)

where (z1, z̄1) and (z2, z̄2) are the endpoints of region A, and (z3, z̄3) and (z4, z̄4) are

the endpoints of region B. This correlator is computed on a strip of height β/2, with

boundary condition B at the top and bottom. The twist operators σ and σ̃, which have

opposite orientation, are defined to reproduce the multisheeted path integral in (2.7). This

definition, together with the conformal transformation properties of the path integral, lead

to the identification of the conformal weights of the twist operators (L0, L0) = (hn, hn)

as [25, 26]

hn =
c

24
(n− 1/n) . (2.9)

The twist operators are not local operators in the original CFT, but they are local operators

in the orbifold CFTn/Zn, so we can use standard methods to compute these correlators in

the orbifold theory.

For Im zi = β
4 , with z̄i = z∗i , the correlator (2.8) computes the replica partition

function at t = 0. To calculate the Rényi entropy as a function of real time, we first

compute the correlation function for Euclidean insertions off the real line with arbitrary

zi, then analytically continue to Lorentzian signature by taking z and z̄ to be independent

complex numbers. For the configuration (2.1),

z1 = −t+ iβ/4, z̄1 = t− iβ/4 (2.10)

z2 = L− t+ iβ/4, z̄2 = L+ t− iβ/4
z3 = D + L− t+ iβ/4, z̄3 = D + L+ t− iβ/4
z4 = D + 2L− t+ iβ/4, z̄4 = D + 2L+ t− iβ/4

Mapping to the upper half plane. The correlation function on a strip (2.8), with

boundary condition B at the top and bottom, can be conformally mapped to a correlator

on the upper half plane (UHP) with boundary condition B on the real line, via

w = e2πz/β . (2.11)

The correlator is then

Istrip
n =

(
2π

β

)8hn

|w1w2w3w4|2hnIUHP
n (wi, w̄i) , (2.12)

where

IUHP
n ≡ 〈σ(w1, w̄1)σ̃(w2, w̄2)σ(w3, w̄3)σ̃(w4, w̄4)〉UHP . (2.13)

In general, IUHP
n is not fixed by conformal invariance and cannot be computed. However its

properties under conformal transformations can be understood from the method of images:

the conformal Ward identity for a 4-point function in the UHP is identical to the conformal

Ward identity for a holomorphic 8-point function in the full plane, where for each insertion

wi in the UHP we include an image point wi=5,6,7,8 = w̄9−i in the lower half-plane [27].

– 7 –
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Figure 2. Schematic illustration of the method of images. The conformal transformation properties

of the correlator with insertions w1,2,3,4 in the UHP are identical to those of the holomorphic 8-

point function in the full plane, with image points wi=5,6,7,8 = w̄9−i. The solid red lines indicate

the regions A and B.

That is, IUHP
n (w1,2,3,4, w̄1,2,3,4) behaves under conformal transformations exactly like an

8-point function

〈φ(w1)φ(w2)φ(w3)φ(w4)φ(w5)φ(w6)φ(w7)φ(w8)〉plane (2.14)

with the image points

w5 = w̄4 , w6 = w̄3 , w7 = w̄2, w8 = w̄1 . (2.15)

This is illustrated in figure 2 (for t purely imaginary). We have written φ rather than σ in

this correlator because the 4-point function on the UHP is not actually equal to an 8-point

function of twist operators on the full plane, it just has the same transformation properties.

There is not necessarily an actual (local) operator φ in the theory whose 8-point function

reproduces IUHP.

2.2 Entanglement entropy in the boundary state model

The time-dependent entanglement entropy in this model has been discussed many times

in the literature [15–17, 23]. However, one of our goals is to understand exactly when

those results apply, so we will repeat the calculation in detail. We begin with a discussion

of the regimes away from the dip, where we agree with the literature, then return to the

possibility of a dip in the next subsection.

The reason we can make further progress in the scaling limit t, L,D � β is that, in

some cases, the correlator in this limit is fixed by the short-distance behavior of the twist

operators. There are two limits where this short distance behavior is known [17, 26, 28].

First, a twist operator σ in the UHP may approach another twist operator σ̃ in the UHP.

In this case we can ignore the boundary, and the short-distance behavior is

σ(x, x̄)σ̃(y, ȳ) ∼ (x− y)−2hn(x̄− ȳ)−2hn (as x→ y , x̄→ ȳ) . (2.16)

Second, a twist operator in the upper half plane may approach the boundary. It is therefore

approaching its image point, and the short distance behavior is

σ(x, x̄) ∼ rn(x− x̄)−2hn (as x→ x̄) , (2.17)

– 8 –
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where rn is a constant (since we have already fixed the normalization of the operator

in (2.16)).

In Euclidean signature, (2.16) and (2.17) are the only types of short distance limit. The

singularities in Lorentzian signature are more complicated, since w and w̄ are independent;

we will return to this below.

The two Euclidean limits fix the behavior of the Lorentzian correlator IUHP
n in certain

regimes where all four twist operators are in one of a limits (2.16) or (2.17). To see when

this occurs, we will look at the cross ratios

ηij = η̄ij =
(wi − wj)(w̄j − w̄i)
(wi − w̄j)(wj − w̄i)

(2.18)

in different regimes. Only five of these six real cross ratios are independent, but it is useful

to keep track of all of them.

Early times. At early times,

0 < t <
L

2
, (2.19)

the β → 0 limit sends

ηij → 1 . (2.20)

This is a configuration where each twist operator approaches its image point, wi → w̄i.

This is not immediately obvious, since there are multiple simultaneous limits. For example,

w2 − w1

w2 − w̄2
→ 0 , (2.21)

but this does not contradict w2 → w̄2, as σ(w1, w̄1) goes to the boundary faster than

to any other operator. That is, w1 approaches w̄1 without any other operators nearby

and this means we can apply the boundary OPE (2.17), σ(w1, w̄1) ∼ rn(w1 − w̄1)−2hn .

Having eliminated σ(w1, w̄1), we can then repeat the same argument for w2 → w̄2, then

for w3 → w̄3, and then for w4 → w̄4. Therefore the leading term in the correlator is

IUHP
n ∼ r4

n [(w1 − w̄1)(w2 − w̄2)(w3 − w̄3)(w4 − w̄4)]−2hn (2.22)

∼ r4
n exp

[
−8π

β
hn(D + 2L+ 2t)

]
.

Plugging into (2.12),

Istrip
n = r4

n

(
2π

β

)8hn

exp

[
−16π

β
hnt

]
. (2.23)

The resulting entanglement entropy in the scaling limit is

Searly
A∪B = 2S0 +

4πct

3β
, (2.24)

where

2S0 = SA∪B(t = 0) =
2c

3
log

β

2πε
, (2.25)

is a constant and we have made explicit the dependence on a UV-cutoff ε.

– 9 –
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Late times. Now consider

t >
D

2
+ L . (2.26)

In this regime, the β → 0 limit sends

ηij → 0 , (2.27)

with

η12 ∼ η34 � η23 � η24 ∼ η13 � η14 . (2.28)

In this limit, w2 → w1 and w̄2 → w̄1 faster than any other limit, so we can apply the OPE

(w2, w̄2)→ (w1, w̄1) in the manner of eq. (2.16). This leaves the operators at points 3 and

4, and since η34 → 0 we can apply the OPE (w3, w̄3)→ (w4, w̄4). Therefore

IUHP
n ∼ [(w1 − w2)(w3 − w4)(w̄1 − w̄2)(w̄3 − w̄4)]−2hn (2.29)

∼ exp

[
−8π

β
hn(D + 3L)

]
.

This gives the entanglement entropy

Slate
A∪B = 2S0 +

2πcL

3β
. (2.30)

The second term is the thermal value, (2L)×sthermal, where sthermal is the thermal entropy

density at inverse temperature β.

Intermediate times, before the dip. Now consider

L

2
< t <

D

2
. (2.31)

The upper limit restricts to the time before the possible dip. In this case,

η12 → 0, η13 → 1, η14 → 1, η23 → 1, η34 → 0 . (2.32)

Once again we can use the OPEs (w2, w̄2) → (w1, w̄1) and then (w4, w̄4) → (w3, w̄3), so

the answer is the same as at late times:

Sintermed
A∪B = 2S0 +

2πcL

3β
. (2.33)

2.3 Light cone singularities and the dip

Finally we turn to the dip regime,

D

2
< t <

D

2
+ L . (2.34)

In this regime, for t < D
2 + L

2 , the limit β → 0 corresponds to

η12 → 0, η13 → 1, η14 → 1, η23 → 0, η24 → 1, η34 → 0 , (2.35)

– 10 –
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Figure 3. Light cone limit x→ 0, x̄→ 1.

and for t > D
2 + L

2 ,1

η12 → 0, η13 → 0, η14 → 1, η23 → 0, η24 → 0, η34 → 0 . (2.36)

Now we come to a key point: the configurations in eqs. (2.35) or (2.36) do not correspond to

any combination of the OPE limits (2.16) and (2.17). Instead, they correspond to the limits

w1 → w2, w3 → w8, w4 → w7, w5 → w6 (2.37)

w̄1 → w̄6, w̄2 → w̄5, w̄3 → w̄4, w̄7 → w̄8 .

This is not possible with the OPE, because the wi are in a different channel than the

w̄i. These limits are therefore intrinsically Lorentzian. They correspond to an operator

hitting the light cones of two other operators, simultaneously. To illustrate this, consider

the cross ratio

x =
(w1 − w2)(w5 − w6)

(w1 − w5)(w2 − w6)
. (2.38)

In the regime (2.34),

x→ 0 , x̄→ 1 . (2.39)

If we map to w1 = w̄1 = 0, w5 = w̄5 = 1, w6 = w̄6 =∞, this corresponds to the limit where

(w2, w̄2) approaches the tip of the causal diamond bounded by the light cones of operators

1 and 5, as in figure 3.

In general, the OPE does not fix the behavior of a correlator in this type of limit, and

in particular it does not imply that there is a singularity [x(1 − x̄)]−2hn . On the other

hand, in rational CFT, these singularities do exist. Much of the rest of the paper will be

devoted to studying these singularities in detail, and understanding the difference in the

non-rational case.2

1(2.36) illustrates why we need to be careful about the order of limits — it is a different limit than (2.27),

but would seem to be identical if we only looked at the five independent cross ratios (η12, η13, η23, η24, η34)

and ignored the order of limits.
2In [15, 17] it was assumed that the singularity [x(1− x̄)]−2hn always exists. In the notation of [17], this

assumption is implicit in the claim that Fn,N can be set to one in the limit β → 0. This is the technical

origin of the difference between our conclusions and previous analyses.
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To see when we do get a strong dip in the entanglement entropy, suppose that we can

treat w and w̄ independently, so that we can choose different channels for left and right

movers. Then the limit (2.37) would produce a term

IUHP
n ∼ [(w1 − w2)(w3 − w8)(w4 − w7)(w5 − w6) (2.40)

×(w̄1 − w̄6)(w̄2 − w̄5)(w̄3 − w̄4)(w̄7 − w̄8)]−hn .

This dominates over the other channels in the regime (2.34), and leads to an entanglement

entropy

Sdip
A∪B(t) = 2S0 +

πc

3β

{
D + 2L− 2t D

2 < t < D
2 + L

2

2t−D D
2 + L

2 < t < D
2 + L

. (2.41)

This reproduces the dip of [15–17], plotted in figure 1.

To summarize: (i) this dip exists if and only if the 4-point function of twist operators

in the UHP has the light cone singularity (2.40), and (ii) this singularity is not required

by the OPE (though we will see that it is required by crossing symmetry in rational CFT).

Note that the additional light cone singularity we are referring to is not simply the

singularity where an operator in the UHP hits the image point of another operator. This

type of singularity, which is also not required by OPE, is not sufficient to produce the

quasiparticle dip.

3 Light cone singularities in the Rényi entropy

3.1 Thermal double model

The method of images determines the conformal transformation properties of a correlator

on the UHP, but it cannot be used to actually compute the correlator. In other words, the

4-point function of twist operators on the UHP is not fixed by the 8-point function with

image points of twist operators on the full plane. In particular it depends on the specific

boundary condition. To avoid this complication, we can use a slightly different model for

the quench introduced in [14]: simply replace the image points by actual twist operators,

i.e., compute the 8-point function

〈σ(w1, w̄1)σ̃(w2, w̄2)σ(w3, w̄3)σ̃(w4, w̄4)σ(w5, w̄5)σ̃(w6, w̄6)σ(w7, w̄7)σ̃(w8, w̄8)〉plane . (3.1)

Physically, this calculates the Rényi entropy in a doubled CFT. The doubled CFT

consists of two decoupled copies of the original theory, CFT1× CFT2, in the thermofield

double entangled state

|TFD〉 =
∑
n

e−βH/2|n〉1|n〉2 . (3.2)

Each CFT is labeled by its own coordinates, (t1, x1) or (t2, x2). The regions now include a

piece in each system:

A = A1 ∪A2, B = B1 ∪B2 (3.3)

where Ai=1,2 is the interval xi ∈ [0, L] in system i, and Bi is the interval xi ∈ [D+L,D+2L].

See figure 4a. The CFTs are evolved in time under the total Hamiltonian H = H1 +H2.

– 12 –



J
H
E
P
0
9
(
2
0
1
5
)
1
1
0

(a) (b)

Figure 4. (a) Entanglement regions in the thermal double model, corresponding to SA∪B in

the original CFT. (b) Simplified setup, with an interval in the CFT and an offset interval in the

thermal double. This setup exhibits the same features, including long-term memory effects in the

quasiparticle picture that are not necessarily present in CFT.

The Rényi entropies are evaluated at t1 = t2 = t and have a non-trivial time depen-

dence in the |TFD〉 state. Similarly to what we discussed in section 2.1 for the boundary

state model, they can be obtained from analytic continuation of the twist correlator for

Euclidean insertions on a thermal cylinder of periodicity β. The twist insertions are at

the endpoints of Ai, Bi with a shift iβ/2 for operators in two different copies of the CFT.

The 8-point function on the plane (3.1) is related via conformal mapping to this 8-point

function on the cylinder.

This thermal double model was designed partly to reproduce the physics of the

Calabrese-Cardy boundary state model for a single interval. For multiple intervals, it

is not clear that these models are equivalent. If anything, it appears that (3.1) may have

more singularities than the corresponding quantity IUHP
n in the boundary state model,

since we do not know of any argument that the boundary state correlator has singularities

when insertions in the UHP hit image points of different operators in the lower half plane

(for example w1 → w̄3). Therefore we suspect, but have not proved, that the Calabrese-

Cardy model cannot have any singularities beyond those in the thermal double. In this

section we will determine what distinguishes the CFTs with and without a large dip in

the Rényi entropies, in the thermal double model. With the (in our view conservative)

additional assumption that boundary correlators do not have any additional singularities

beyond those present in the 8-point function, the same conclusions apply to the boundary

state model.

3.2 Offset intervals in the thermal double

We have argued that entanglement memory comes from the light cone singularity of

the cross-ratio x introduced in (2.38). To isolate this physics, we will study the simpler

correlator

Iplane
n ≡ 〈σ(w1, w̄1)σ̃(w2, w̄2)σ(w5, w̄5)σ̃(w6, w̄6)〉plane , (3.4)

with the same points as defined above,

w1 = e
2π
β

(−t+iβ/4)
, w̄1 = e

2π
β

(t−iβ/4)
(3.5)

w2 = e
2π
β

(L−t+iβ/4)
, w̄2 = e

2π
β

(L+t−iβ/4)

w5 = e
2π
β

(D+2L+t−iβ/4)
, w̄5 = e

2π
β

(D+2L−t+iβ/4)

w6 = e
2π
β

(D+L+t−iβ/4)
, w̄6 = e

2π
β

(D+L−t+iβ/4)
.
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If there is a dip in the entanglement computed from the 8-point function, then it must also

appear in this 4-point function. So, if we can rule out quasiparticle-like singularities of this

4-point function, then the quasiparticle picture is ruled out for the 8-point function as well.

The correlator (3.4) has a natural physical interpretation in the thermal double theory:

it computes the Rényi entropy of a region A′ consisting of an interval in CFT1, and an

offset interval in the thermal double CFT2, as in figure 4b:

A′ : {x1 ∈ [0, L]} ∪ {x2 ∈ [D + L,D + 2L]} . (3.6)

Namely

Tr ρnA′ ∼ Icylinder
n =

(
2π

β

)8hn

|w1w2w5w6|2hnIplane
n . (3.7)

The quasiparticle picture predicts a memory effect in this situation. In the thermal double,

the initial state in the quasiparticle picture consists of entangled pairs, where one member

of each pair is in CFT1 and the other is in CFT2, with both particles at the same x-

position. All of these pairs contribute to the entanglement entropy at t = 0, so the initial

entanglement entropy is (2L) × sthermal(β) (plus the usual divergent term). Under time

evolution, the particle in CFT1 moves one direction, and the particle in CFT2 moves the

other direction. In the range
D

2
< t <

D

2
+ L (3.8)

we therefore find particles in CFT1 with x1 ∈ [0, L] that are entangled with particles in

CFT2 with x2 ∈ [D + L,D + 2L]. This is illustrated in figure 5a. Both of these particles

are in region A′, so the entanglement entropy decreases. Thus the quasiparticle prediction

for the entanglement entropy, corresponding to the n → 1 limit of (3.4), is as shown in

figure 5b. The early-time prediction is exactly Slate, intermed
A∪B computed for the boundary

state in (2.30), and the dip prediction is the same as Sdip
A∪B in (2.41). Our goal in this section

is to understand when this quasiparticle prediction is correct and when it is incorrect.

The correlator (3.4) is (for t, L,D � β)

Iplane
n = exp

[
−8π

β
hn(D + 3L)

]
(xx̄)2hnGn(x, x̄) , (3.9)

where

Gn(x, x̄) ≡ 〈σ(0)σ̃(x, x̄)σ(1)σ̃(∞)〉 . (3.10)

The cross-ratio x, defined in (2.38), is

x ≈ exp

[
−2π

β
(D + 2t)

]
≈ 0 (3.11)

x̄ ≈ exp

[
2π

β
(D + 2L+ t−max(D + 2L− t, t)−max(D, 2t))

]
.

The OPE implies that this correlator has the singularities

Gn ∼ (xx̄)−2hn (as x, x̄→ 0) (3.12)

– 14 –



J
H
E
P
0
9
(
2
0
1
5
)
1
1
0

(a) (b)

Figure 5. Quasiparticle picture for the offset-intervals entanglement in the thermal double model.

(a) Entangled quasiparticle pairs (blue dots) in systems 1 and 2 are separated by ∆x ∼ β at t = 0

(dashed horizontal line). Under time evolution, the particles move in opposite directions. Eventually

both particles enter region A′. (b) Quasiparticle prediction for the entanglement entropy SA′ − 2S0

of region A′. When the entangled pair enters region A′, the entanglement entropy decreases.

and

Gn ∼ [(1− x)(1− x̄)]−2hn (as x, x̄→ 1) . (3.13)

Away from the dip, i.e., outside the range (3.8), x̄ ≈ 0 so the correlator is given by (3.12).

This leads to the entropy

Searly, late
A′ = 2S0 +

2πcL

3β
, (3.14)

as expected from the quasiparticle picture.

In the range (3.8), x→ 0 and x̄→ 1, with

1− x̄ ≈ exp

[
−2π

β
min(D + 2L− 2t, 2t−D)

]
. (3.15)

so that
x

1− x̄
→ 0 . (3.16)

The OPE does not require any particular behavior in this limit. But if we assume that

Gn(x, x̄) ∼ [x(1 − x̄)]−2hn in this limit, then the resulting entanglement entropy is equal

to (2.41). This would agree with the quasiparticle picture. Therefore in this simple setup,

the validity of the quasiparticle model is precisely the question of whether the correla-

tor (3.10) has a singularity

Gn(x, x̄)
?∼ [x(1− x̄)]−2hn (as x→ 0, x̄→ 1) . (3.17)

3.3 Light cone features in the second Rényi

Our conclusion will be that the singularity (3.17) exists if and only if the theory is current-

dominated, as explained in the introduction. It is simplest to make this argument for the

second Rényi entropy,

G2(x, x̄) = 〈σ2(0)σ̃2(x, x̄)σ2(1)σ̃2(∞)〉 , (3.18)
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where the subscript indicates replica number n = 2. The two-sheeted manifold that defines

these double-twist operators is in fact a torus. It follows that this correlation function is

fixed by the torus partition function, and the mapping derived in [28, 29] is

G2(x, x̄) =
(
216xx̄(1− x)(1− x̄)

)−c/24
Z(τ, τ̄) . (3.19)

The partition function,

Z(τ, τ̄) = Tr exp
[
2πiτ

(
L0 −

c

24

)
− 2πiτ̄

(
L̄0 −

c

24

)]
, (3.20)

is evaluated with the torus modulus related to the twist operator insertions by

x =
θ2(τ)4

θ3(τ)4
, τ = i

K(1− x)

K(x)
, (3.21)

where K(x) = π
2 2F1(1

2 ,
1
2 , 1, x

2), and similarly for τ̄(x̄). For small x, the relation is

x = 16
√
q +O(q), q ≡ e2πiτ , (3.22)

and for x near 1,

1− x = 16
√
q′ +O(q′), q′ ≡ e−2πi/τ . (3.23)

The modular transformation of the torus τ → −1/τ is related to crossing symmetry of the

4-point function, x→ 1− x.

This maps the problem of memory effects in the 2nd Rényi to a question about the

spectrum. Including the prefactors from (3.19) and (3.9), and the conformal factor in (3.7)

from mapping the cylinder to the plane, the 2nd Rényi is

S2 =
πcL

2β
− log

[
2−2c/3(xx̄)c/12[(1− x)(1− x̄)]−c/24Z(τ(x), τ̄(x̄))

]
+ S0

2 , (3.24)

where

S0
2 =

c

2
log

β

2πε
(3.25)

is a constant independent of t, L,D.

First, let’s reproduce the OPE singularities (3.12) and (3.13). The limit x, x̄→ 0 is the

zero temperature limit of the partition function τ → i∞, τ̄ → −i∞, so only the vacuum

contributes to the trace:

Z(τ, τ̄) ∼ q−c/24q̄−c/24 ∼ 22c/3x−c/12x̄−c/12 . (3.26)

Including the prefactor in (3.19),

G2 ∼ (xx̄)−c/8 = (xx̄)−2h2 . (3.27)

The other OPE limit, x, x̄→ 1, is a high temperature limit. In this limit, we use modular

invariance of the torus partition function, projecting the trace onto the vacuum in the dual

channel

Z(τ, τ̄) ∼ (q′)−c/24(q̄′)−c/24 (3.28)
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which leads to

G2 ∼ [(1− x)(1− x̄)]−2h2 , (3.29)

as expected.

Now consider the mixed limit x � 1 − x̄ � 1. This is a mixed-temperature limit,

where we send

τ → i∞, τ̄ → i0− . (3.30)

This is low temperature for left movers, and high temperature for right movers. We first

take the limit x→ 0, so that the partition function gets contributions only from left-moving

ground states, i.e., conserved currents,

Z(τ, τ̄) ∼ q−c/24
∑

currents

q̄L0−c/24 . (3.31)

The sum is over states with conformal weights (0, L0). The limit that is actually relevant

to the 2nd Rényi simultaneously takes x → 0 and x̄ → 1 in a particular ratio, so (3.31)

might not contain the dominant terms in that limit. However our goal is only to check

whether the quasiparticle singularity is present, and (3.31) is sufficient for this purpose.

Now in the limit x̄ → 1, the sum is dominated by the states with very large L0. The

density of states in CFT, Ω(L0, L0), is fixed asymptotically by the Cardy formula [30],

Ω(L0, L0) ≈ exp

(
2π

√
c

6
L0 + 2π

√
c

6
L0

)
(as L0, L0 →∞) , (3.32)

where c is the central charge. This formula applies only when both L0 and L0 are large,

so it does not fix the behavior of (3.31). Instead, define the density of currents

Ωcurrents(L0) = Ω(L0 = 0, L0) . (3.33)

The singularity in (3.31) will be fixed by the asymptotic growth of Ωcurrents. Let us param-

eterize this growth by a number ccurrents, defined such that

Ωcurrents(L0) ≈ exp

(
2π

√
ccurrents

6
L0

)
as L0 →∞ . (3.34)

Clearly c ≥ ccurrents. To see that we can always parameterize the asymptotic growth of

Ωcurrents in this way, first note that the growth must be at least this fast, since the stress

tensor guarantees ccurrents ≥ 1
2 .3 Also, the exponent cannot have a larger power of L0,

since a singularity stronger than the quasiparticle singularity would not be consistent with

modular invariance.

ccurrents can be interpreted as an effective central charge for the conserved right-moving

current sector of the theory. As q̄ → 1, the sum (3.31) can be evaluated by a saddlepoint

approximation, with the usual Cardy result

Z(τ, τ̄) ∼ q−c/24(q̄′)−ccurrents/24 ∼ 2(c+ccurrents)/3x−c/12(1− x̄)−ccurrents/12 . (3.35)

3Without null states, the stress tensor descendants of the vacuum grow asymptotically as Ω ∼
exp(π

√
2L̄0/3), corresponding to ccurrents = 1. With null states this number can decrease, with the lower

bound ccurrents = 1
2

set by the Ising model since this is the unitary minimal model of lowest central charge.
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This formula is one of our main results: it implies that the quasiparticle picture for the

second Rényi applies if and only if ccurrents = c. That is, the quasiparticle picture holds

only in theories which are current dominated, meaning the asymptotic number of conserved

currents is approximately equal to the total number of states. This is true in rational CFT

(see below), but not true in general. In particular, a theory with no conserved currents

besides the stress tensor has

ccurrents ≤ 1 . (3.36)

Thus, in a theory with c > 1 and no extended chiral symmetry, the quasiparticle picture

does not produce the correct 2nd Rényi entropy.4

In a non-rational theory with ccurrents < c, the 2nd Rényi entropy is not universal,

since representations other than the vacuum may dominate the partition function. The

contribution from the vacuum representation, obtained by inserting (3.35) into (3.24), sets

an upper bound during the dip regime, and the quasiparticle result sets a lower bound:

πcL

2β
− πc

4β
min(D + 2L− 2t, 2t−D) + S0

2 (3.37)

< Sdip
2 ≤ πcL

2β
− (c+ 2ccurrents)π

12β
min(D + 2L− 2t, 2t−D) + S0

2 .

For ccurrents = c, the dip in S2 is as large as possible; for ccurrents � c there is still a dip

but its magnitude is smaller by a factor of at most 3.

More comments on rational vs general CFTs. In a rational CFT such as the c < 1

minimal models, the partition function is a finite sum of characters:5

Z(τ, τ̄) =
∑
R

χR(q)χR(q̄) . (3.38)

These characters transform under S : τ → −1/τ by the action of the modular S-matrix,

χR(q) =
∑
P

SRPχP (q′) . (3.39)

This is again a finite sum. It follows that the mixed-temperature limit of the partition

function relevant to the Rényi with x� 1− x̄� 1 is

Z(τ, τ̄) ∼ S00q
−c/24(q̄′)−c/24 . (3.40)

Comparing to (3.35), we see c = ccurrents in rational CFT.

In a c > 1 CFT where the vacuum representation has only Virasoro descendants, the

manner in which modular invariance is enforced is quite different. The S-transformation

of the vacuum character is an integral [31]6

χVir
0 (q̄) =

∫ ∞
(c−1)/24

dhS(h, 0)χVir
h (q̄′) . (3.41)

4In the WN minimal models, which generalize the Virasoro minimal models to a WN chiral algebra,

ccurrents < N −1. In a theory with chiral algebra WN , but c > N −1, there are no null states in the vacuum

representation and this leads to ccurrents = N − 1.
5We assume the diagonal modular invariant but the conclusions are similar for other invariants.
6S(h, 0) =

√
2
ph

sinh(2πbph) sinh(2πb−1ph) where h = p2
h + c−1

24
and c = 1 + 6(b+ b−1)2.
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This is clearly not a sum over characters in the dual channel, and does not include a

contribution from the vacuum. As q̄ → 1,

χVir
0 (q̄) ∼ (q̄′)−1/24 (3.42)

so ccurrents = 1. Modular invariance still holds, but in a non-rational CFT, the vacuum

singularity as τ̄ → i0− does not come from any individual character in the original trace.

Instead it comes from the asymptotics of the infinite sum.

3.4 Conformal block expansion

We now return to the general Rényi index n. In this case we can make a similar argument

using conformal blocks instead of characters, but the singularity in the dual channel is

poorly understood.

The twist correlator may be expanded in conformal blocks in any channel. In the

s-channel x→ 0,

Gn(x, x̄) =
∑
p

apFp(cn, hn;x)Fp(cn, hn; x̄) , (3.43)

where ap is a constant related to the OPE coefficients, and Fp(c
′, h;x) is the conformal

block with internal weight hp, external weights h, and central charge c′ = cn (since this is a

correlator in the replica theory). The conformal blocks are, by definition, fixed entirely by

the chiral algebra. In the limit x� 1− x̄� 1, the dominant contribution is not necessarily

the vacuum. The contribution from the vacuum sets a lower bound,

Gn(x, x̄) & F0(cn, hn;x)F0(cn, hn; x̄) ≈ x−2hnF0(cn, hn; x̄) . (3.44)

This contribution is universal, in the sense that it does not depend on the full details of

the theory: it depends only on the conformal block F0(cn, hn; x̄) in the limit x̄ → 1. It is

therefore fixed by the right-moving chiral algebra. Of course, if the two intervals are offset

in the opposite direction, then left-moving currents contribute instead. In the original

quench model, with two intervals in a pure state of a single CFT, both types of currents

contribute.

The conformal block expansion (3.43) is in the orbifold, CFTn/Zn, so F0 in (3.44) is

the vacuum block in the orbifold. The chiral algebra of the orbifold is fixed by the chiral

algebra of original CFT, but is not identical (see for example [28]). This distinction is

discussed further below.

Rational CFT has the quasiparticle dip. In a rational CFT, we can expand any

individual conformal block as a finite sum over primaries in the dual channel:

Fp(x̄) =
∑
q

bpqFq(1− x̄) , (3.45)

(with some of the arguments of the conformal block suppressed). Every term contributes

on the right hand side. Thus

F0(x̄) ∼ b00(1− x̄)−2hn as x̄→ 1 . (3.46)
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This is the quasiparticle singularity (3.17).7 Thus in the scaling limit t, L,D � ξ, the

quasiparticle picture does apply to rational CFTs.

One way to understand the origin of the singularity in F0(x̄) as x̄→ 1 in rational CFT

is from crossing symmetry,

Gn(x, x̄) = Gn(1− x, 1− x̄) . (3.47)

In a rational CFT, each side of this equation is a finite sum. Therefore, in order to reproduce

the identity singularity on the rhs, individual terms on the l.h.s. must go as (1 − x̄)−2hn .

General CFT. In a general CFT, the conformal block expansion is infinite. In this case

the crossing equation (3.47) does not imply anything about the singularities of individual

terms in the s-channel as x̄ → 1, since these singularities can come from the infinite sum

rather than from any particular term. This is exactly what occurs in higher spacetime

dimensions, where there is no such thing as rational CFT — individual conformal blocks

cannot reproduce the identity singularity in the other channel, so it is instead reproduced

by the asymptotics of the infinite sum (see for example [35]).

Suppose that the chiral algebra of the CFT is just the Virasoro algebra. That is, the

only states in the CFT of dimension (0, L0) are the Virasoro descendants of the vacuum.

The vacuum contribution to the twist correlator for x� 1− x̄� 1 is then

Gn(x, x̄) ∼ x−2hnF
Virn/Zn
0 (cn, hn; x̄) , (3.48)

where F
Virn/Zn
0 is the vacuum conformal block associated to the chiral algebra Virn/Zn.

This conformal block is not just the Virasoro block, though it is fixed entirely by the

Virasoro algebra. Denoting the Virasoro modes in copy k of the CFT by L
(k)
n , the block

F
Virn/Zn
0 is defined to include the contributions from all Zn-symmetric combinations of

the states

L
(k1)
−n1

L
(k2)
−n2
· · ·L(kr)

−nr |0〉 . (3.49)

To proceed, we would need the behavior of this vacuum block in the limit x̄ → 1, but

this is not known. Indeed, even the behavior of FVir
0 in the limit x̄ → 1 appears to be

unknown. However, there is generically no reason for it to reproduce the quasiparticle

singularity (3.17). We therefore expect in this limit

F
Virn/Zn
0 (cn, hn; x̄)� (1− x̄)−2hn . (3.50)

Our results for the second Rényi entropy in section 3.3 confirmed (3.50) for n = 2. We

do not have a conclusive argument argument for n > 2, but since the singularity is not

required it is highly implausible that it would appear (for generic central charge — of course

it does appear in the minimal models). Crossing symmetry does not allow a singularity

stronger than (1− x̄)−2hn , so this leaves (3.50). Other than the second Rényi, there is one

7The coefficient b00 in (3.46) is related to the quantum dimension of the twist operator in the orbifold

theory. It does not affect the answer in the scaling limit t, L,D � β, but may have interesting impli-

cations at intermediate times; quantum dimensions have appeared several times before in entanglement

calculations [32–34].
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other case we are aware of with c > 1 where the Virasoro blocks can be computed exactly

(c = 25, h = 15/16 [36]), and the inequality analogous to (3.50) holds in that case as well.8

Since we do not know the singularity of the orbifold conformal block as a function of n,

we cannot determine the entanglement entropy, beyond the statement that it disagrees with

the quasiparticle picture. It would be very interesting to compute the universal vacuum

contribution.

3.5 c = 1

We have discussed the minimal models with c < 1, and “generic” CFTs with c > 1 but no

conserved currents other than the stress tensor. Now we turn to theories with c = 1 and

show that the Rényi entropies of these theories agree with the quasiparticle picture.

The starting point for almost all known c = 1 CFTs is the compact free boson theory,9

defined by the Lagrangian

L =
1

2π
∂X∂̄X , (3.53)

with the compactification condition X = X + 2πR, i.e., the target space is a circle with

radius R. This theory has c = 1 and infinitely many (Virasoro) conformal primaries with

a discrete spectrum of conformal weights for finite R [38, 39].

We can analyze the light cone singularity of the second Reyni entropy of this theory

explicitly, via the torus partition function [39]

Z(R) =
1

η(τ)η̄(τ̄)

∑
e,m∈Z

qhe,m q̄h̄e,m , (3.54)

where the conformal weights are given by

he,m =
1

2

(
e

R
+
mR

2

)2

, (3.55)

h̄e,m =
1

2

(
e

R
− mR

2

)2

, (3.56)

and η denotes the Dedekind eta function. When R2 is rational, there are infinitely confor-

mal primaries with a given he,m or h̄e,m. For example, he,m = 0 whenever 2e/m = −R2.

Moreover, in this case the Virasoro algebra is extended to a larger chiral algebra, with

8Explicitly:

F0

(
c = 25, h =

15

16
; x̄

)
=
[
16q̄(x̄(1− x̄))7/8θ3(q̄)3

]−1

, q̄ ≡ exp

[
−πK(1− x̄)

K(x̄)

]
, (3.51)

where θ3 and K are the standard elliptic functions. In the limit x̄→ 1, we have q̄ ∼ e−π
2/ log(16/(1−x̄)) and

θ3(q̄) ∼
√

π
1−q̄ , so, ignoring constants and log corrections,

F0

(
c = 25, h =

15

16
; x̄

)
∼ (1− x̄)−7/8 (as x̄→ 1) . (3.52)

This is much weaker than the vacuum singularity (1 − x̄)−2h = (1− x̄)−15/8.
9The theory in [37] is an exception.
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respect to which there are finitely many primary operators, making the theory ratio-

nal [39, 40]. But when R2 is irrational, there is no such degeneracy in the weights and the

theory has no extended symmetry, so we investigate this case separately (these CFTs are

examples of what [41] calls “quasi-rational”).

In the light cone limit τ → i∞, τ̄ → i0−, q → 0+, q̄ → 1−, the partition function in

eq. (3.54) behaves as

Z(R) =
1

η(τ)η̄(τ̄)

(
1 + qhmin q̄h̄min + · · ·

)
, (3.57)

where hmin and h̄min are the minimal non-zero holomorphic and anti-holomorphic conformal

weights, respectively. The assumption that R2 is irrational ensures that hmin, h̄min > 0,

i.e., there are no additional conserved currents. Therefore, all the terms besides 1 approach

0 in this limit, and the series is absolutely convergent, so the behavior of the singularity

is controlled by the η functions. To analyze them we use the modular transformation

property:

η(−1/τ) =
√
−iτη(τ) , η̄(τ̄) =

√
−i
τ̄
η̄(τ̄ ′) , (3.58)

where τ̄ ′ ≡ −1/τ̄ . In this limit τ̄ ′ → −i∞ and so we have η(τ)→ q1/24 and η̄(τ̄ ′)→ q̄′1/24

and thus

Z(R) ∼ q−1/24q̄′−1/24 , (3.59)

where the last expression gives the asymptotic behavior because the q and q̄ divergence

is exponential and so dominates over the vanishing of τ̄ . We thus expect the dip in the

second Reyni entropy after a quench, because we have the same asymptotic behavior as

the rational CFT case, shown in eq. (3.40).

The Reyni entropies of two intervals in the compact boson theory were computed

in [42, 43], and generalized to arbitrary complex cross ratio in [44]. We will consider only

the decompactified limit, R→∞. In this case the correlator of four n-twist operators is

〈σ(w1, w̄1)σ̃(w2, w̄2)σ(w3, w̄3)σ̃(w4, w̄4)〉 = (3.60)(
w31w42w̄31w̄42

w21w43w41w32w̄21w̄43w̄41w̄32

) c
12

(n−1/n)

Fn(x, x̄) ,

with x = w21w43
w31w42

and wij = wi −wj . The explicit formula for Fn(x, x̄) is given in eq. (142)

of [44], from which it is easy to check that the only power-law singularity in the light cone

limit w2 → w1, w̄2 → w̄3, which corresponds to x → 0, x̄ → 1, comes from the prefactor

in (3.60). This is the quasiparticle singularity.

The general picture, then, is that for a given chiral algebra, there is a critical central

charge ccurrents. In many examples, including Virasoro symmetry, WN symmetry, and Kac-

Moody symmetry (and perhaps in general), it is the same as the threshold for the theory

to be rational. If c = ccurrents, including irrational but ‘nearly rational’ theories like the

irrational boson where the central charge sits at the threshold, then the spectrum is current

dominated and the entanglement entropy has quasiparticle behavior; and if c > ccurrents

then the entanglement entropy disagrees with the quasiparticle picture.
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3.6 Entanglement is larger than quasiparticle at the dip midpoint

We have argued that in theories with c > ccurrents, the entanglement entropy of two intervals

does not agree with the quasiparticle prediction. There is one final step before we can

conclude that memory effects are reduced: we need to argue that the dip is smaller in

these theories, not larger. This seems obvious physically, but we will only give a proof

limited to the second half of the dip regime: D+L
2 < t < D

2 + L. This is enough to

demonstrate the result at the midpoint of the quasiparticle dip:

SA∪B ≥ Squasiparticle
A∪B

(
t =

D + L

2

)
. (3.61)

To demonstrate this, we apply strong subadditivity to the neighboring regions

A : [0, L] , C : [L+ δ, L+D − δ], B : [L+D, 2L+D] , (3.62)

separated by a small distance, δ � β � t, L,D. The entanglement entropy of each

individual region is given by the Calabrese-Cardy formula for a single interval of size `

after a global quench:

S`(t) = S0 +
πc

3β
min(2t, `) . (3.63)

We can also apply their multiple-interval result to neighboring regions (since for separations

of order δ contributions from possible light cone singularities would be suppressed as δ/β):

SA∪C = SC∪B = 2S0 +
πc

3β
min(2t, L+D) , (3.64)

and

SA∪B∪C = 3S0 +
πc

3β
min(2t, 2L+D) . (3.65)

Now strong subadditivity, in the form

SA∪B ≥ SA∪C∪B + SB − SC∪B (3.66)

implies

SA∪B ≥ 2S0 +
πc

3β
[min(2t, 2L+D) + min(2t, L)−min(2t, L+D)] . (3.67)

In the range D+L
2 < t < D

2 + L, this becomes

SA∪B ≥ 2S0 +
πc

3β
(2t−D) = Squasiparticle

A∪B . (3.68)

Thus the quasiparticle prediction is a theoretical lower bound for the entanglement entropy

during the second half of the dip (the rising edge of the dip in figure 1), in particular at

the midpoint (3.61).

It is interesting to note that a similar bound for the first half of the dip regime D
2 <

t < D+L
2 could be obtained from the monogamy inequality

SA∪B ≥ SA∪C∪B + SA + SB + SC − SC∪A − SC∪B , (3.69)

which is believed to hold in holographic theories [45, 46], but is not satisfied in general

quantum systems.
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4 The large-c limit

We have argued that entanglement scrambles for c above a critical value, but the actual

value of the entanglement entropy in theories that scramble is not universal during the dip

regime. In this section, we will show that in the holographic c → ∞ limit, all theories

scramble maximally. We will derive this universal limit using semiclassical gravity, and

confirm it in conformal field theory (subject to some assumptions about the growth of

OPE coefficients in these theories).

Holographic CFTs have few chiral states, so ccurrents ∼ 1, but many total states, so

c� 1. Therefore some of the CFT calculations in sections 2 and 3 must be revisited, since

the large-c limit may compete with the scaling limit t, L,D � β. In section 4.4, we address

the interplay between these two limits (see also [47]) using the example of the 2nd Rényi

in the D1-D5 CFT.

4.1 Holographic entanglement entropy

The holographic dual of the thermofield double setup described in section 3 has been

studied in [14]. It consists of the eternal BTZ black string with time taken to run forwards

on both sides of the Penrose diagram, thus producing a time dependent excited state. For

convenience, in this section we will set the inverse temperature β of the black string to 2π,

and only reinstate β in the final expression of the holographic entanglement entropy. We

also set the AdS radius to `AdS = 1.

According to the proposal of [48, 49], the holographic entanglement entropy of disjoint

intervals in 2d CFTs is computed by the minimal length collection of geodesics that extend

in the bulk and join the intervals endpoints on the boundary [28]. To compute the geodesics

associated to the offset intervals, we follow [14] and exploit the local equivalence between

the BTZ black hole and empty AdS3. This allows to compute the length of geodesics in

the black string geometry directly in terms of the length of AdS3 geodesics anchored on

the conformal boundary, which are just semicircles.

As reviewed in [14], the different regions of the BTZ black string can be mapped to

the Poincaré patch of AdS3:

ds2 =
1

u2
(−dy2

0 + dy2
1 + du2) . (4.1)

In particular, the exterior metric of the black string

ds2 = − sinh2 ρ dt21 + cosh2 ρ dx2
1 + dρ2 , (4.2)

with conformal boundary at ρ→∞, maps to a portion of the Poincaré patch (we refer to

the appendix B in [14] for the full explicit coordinates transformation). Near the boundary,

the two sets of coordinates are related by

y1 ± y0 ≈ ex1±t1 ,
1

u
≈ 1

2
e ρ−x1 . (4.3)

These coordinates cover one of the exterior regions of the eternal BTZ string; the sec-

ond exterior region with spatial coordinate x2 is reached by continuing t → t + iπ. The
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Figure 6. Illustration of the two competing configurations of geodesics for the offset interval in

the (y1, u) plane. The disconnected configuration in solid lines is the one of minimal length for all

times.

boundaries of the two exterior regions thus cover the portion y2
0−y2

1 ≤ 0 of the AdS bound-

ary. In particular, a point P on the right (left) boundary of the black string in Poincaré

coordinates reads

P = (y0, y1) = ex1,2(sinh t1,2,± cosh t1,2) . (4.4)

Now, recall that the length of a spacelike geodesic in AdS3 joining two points P1, P2

at radial coordinates uP1 , uP2 near the AdS boundary u = 0 is given by

L12 = log

[
−∆y2

0 + ∆y2
1

uP1uP2

]
, (4.5)

where ∆y0 ≡ (y0,P1 − y0,P2) and similarly for ∆y1. Using (4.3), it is then straightforward

to obtain the length of spacelike geodesics anchored on the boundaries of the black string

geometry.

The offset interval setup we are interested in corresponds to one interval of length L

on each boundary, shifted by a distance D, at some fixed time t. In Poincaré coordinates,

this is the set of points:10

P1 = (sinh t, cosh t) , P2 = eL(sinh t, cosh t) ,

P5 = eD+2L(sinh t,− cosh t) , P6 = eD+L(sinh t,− cosh t) .
(4.6)

In the computation of the holographic entanglement entropy, there are two competing sets

of bulk geodesics ending on the endpoints of the offset interval. One consists of disconnected

geodesics joining P1, P2 and P5, P6; while the second connected configuration of geodesics

extends throughout the interior region of the BTZ string joining P1, P6 and P2, P5 (see

figure 6).

To regularize the length of these geodesics we introduce a radial cutoff ρcutoff in

the coordinates (4.2) and define ε ≡ e−ρcutoff/2. In Poincaré coordinates, the cutoff is

ucutoff1,2 = ε ex1,2 and depends on the spatial coordinate x1,2 of the point on the boundary.

From (4.5) and (4.6), we then immediately obtain the entanglement entropy associated to

10We use the same notation for the points as in section 3.2.
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the disconnected configuration

Sdisconnected =
L12 + L56

4GN
=

2c

3
log

[
2 sinh(L/2)

ε

]
, (4.7)

where we have used c = 3/(2GN ). Reinserting the correct factors of β and taking the

scaling limit L� β, we have

Sdisconnected = 2S0 +
2πcL

3β
, (4.8)

where, as in (2.25), we have isolated the divergent contribution

2S0 =
2c

3
log

β

2πε
, (4.9)

For the second, connected, configuration we have instead

Sconnected =
L16 + L25

4GN
=
c

3
log

[
2

cosh(2t) + cosh(D + L)

ε2

]
. (4.10)

Reinserting the correct factors of β and taking t,D, L� β, this reduces to

Sconnected = 2S0 +
2πc

3β

{
D + L for β < t < D+L

2

2t for t > D+L
2

. (4.11)

Minimizing over the different configurations then shows that, as expected, the disconnected

configuration is always dominant, so the entanglement entropy is constant:

S = Sdisconnected = 2S0 +
2πcL

3β
, (4.12)

for all times. This corresponds to the ‘maximal scrambling’ (dashed) line in figure 1, and

to an identically vanishing mutual information.

In particular, this result cannot be corrected by complex geodesics connecting real

boundary endpoints, as in pure AdS these have the same length, (4.5), as real ones.

4.2 Second Rényi entropy from semiclassical gravity

In section 3.3 we studied the second Rényi entropy of the offset interval through the anal-

ysis of the torus partition function Z(τ, τ̄), and argued that generically the quasiparticle

argument does not produce the correct 2nd Rényi. Here we compute the torus parti-

tion function from semiclassical gravity and explicitly verify that in holographic CFTs the

quasiparticle dip in the second Rényi of the offset interval is suppressed by a factor 3.

On the gravity side, the torus partition function is computed by a path integral over

Euclidean three-geometries that are conformal at infinity to a torus of modular parameter

τ = iβ
2π . The inverse temperature and angular momentum are respectively the real and

imaginary parts of β.

In the semiclassical limit, all known saddlepoints of pure 3d gravity that contribute to

the partition function have classical action of the form [50, 51]

S(τ, τ̄) =
iπ

8GN
(γ · τ − γ · τ̄) , (4.13)
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with

γ · τ =
aτ + b

cτ + d
, γ =

(
a b

c d

)
∈ SL(2,Z) . (4.14)

Note that the same SL(2,Z) transformation acts on both τ and τ̄ . The simplest saddlepoint

is thermal AdS3, with action

Sthermal(τ, τ̄) =
iπ

8GN
(τ − τ̄) , (4.15)

which can be viewed as a solid torus with a contractible spatial cycle. Its S-transformation

τ → − 1
τ is the Euclidean BTZ black hole

SBTZ(τ, τ̄) = − iπ

8GN

(
1

τ
− 1

τ̄

)
. (4.16)

The more general manifolds that can be constructed by a transformation γ as in

eqs. (4.13)–(4.14) form an SL(2,Z) family of black holes.

The leading semiclassical approximation to the partition function is given by the so-

lution of least action:

logZ(τ, τ̄) ≈ −Smin(τ, τ̄) =
π

8GN
maxγ (−iγ · τ + iγ · τ̄) . (4.17)

This leads to a rich phase diagram in the upper-half τ plane. Thermal AdS space is

the dominant classical solution in the fundamental domain |τ | > 1, |Re τ | ≤ 1/2, and in

any of its translates by τ → τ + n for integer n, as the free energy is invariant under

the T -transformation τ → τ + 1. Similarly, the Euclidean BTZ black hole dominates

whenever there exists an integer n such that − 1
τ+n lies in the fundamental domain. The

phase diagram resulting from (4.17) is a subtesselation of the usual tesselation of the upper

half τ -plane by fundamental domains of SL(2,Z), with an infinite number of phases [51].

For instance, for purely real β one recovers the familiar Hawking-Page transition between

thermal AdS at low temperatures and Euclidean BTZ at high temperatures.

The modulus of the torus τ is related to the cross ratio x in the four-point function

that computes the second Rényi entropy of the offset interval through eq. (3.21)

τ(x) = i
K(1− x)

K(x)
. (4.18)

The image of the x plane under the map x → τ(x) is shown in figure 7a. Each region on

the τ plane is labeled by the element of SL(2,Z) that takes this region to the fundamental

domain. This element also provides the value of the action in that region — for example,

in the region labeled STS, the action is proportional to the imaginary part of STS · τ =
τ

1−τ . Of all the regions shown, there are only four distinct values of the action, so these

correspond to four different phases, shown in different colors. The Euclidean action relevant

to the twist correlator is the value of the action on the dominant saddle:

logZ(x, x̄) ≈ π

8GN
max

{
−iτ + iτ̄ ,

i

τ
− i

τ̄
,− i

1− τ
+

i

1− τ̄
,− iτ

1 + τ
+

iτ̄

1 + τ̄

}
, (4.19)

where τ, τ̄ are functions of x, x̄. The phase regions on the x plane are shown in figure 7b.
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Figure 7. (a) Phases of the partition function on the τ plane. Regions are labeled by the element

of SL(2,Z) which takes points in the region to the fundamental domain, marked ‘1’. Distinct phases

are the four colored regions, separated by bold lines. (b) Phases of Z(τ(x), τ̄(x)), on the x-plane.

Only the distinct phases 1, S, ST, STS are labeled. The dashed diamond is responsible for the two

phases in Lorentzian signature.

In Lorentzian signature the cross ratio varies inside the interval [0, 1]. This comes,

upon analytic continuation, from the Euclidean diamond

Rex > |Imx| , 1− Rex > |Imx| (4.20)

in the x−plane, shown as the dashed diamond in figure 7b. As this Euclidean diamond

intersects only the 1 and S phases, there is only one possible phase transition in Lorentzian

signature:

logZ(x, x̄) ≈ πc

12
max

{
−iτ + iτ̄ ,

i

τ
− i

τ̄

}
. (4.21)

At early and late times (t < D/2, t > D/2 + L): x, x̄ ∼ 0, the 1 phase dominates and

logZ(x, x̄) ≈ 22c/3x−c/12x̄−c/12 (4.22)

in complete agreement with (3.26). Substituting in the expression for the second

Rényi (3.24), we obtain

Searly,late
2 =

πcL

2β
+ S0

2 . (4.23)

At intermediate times (D/2 < t < D/2 + L), we are in the mixed limit where the 1 phase

dominates again as x� 1− x̄� 1. This gives

logZ(x, x̄) ∼ 2c/3x−c/12 (4.24)

G2 ∼ 2−c/3x−c/8(1− x̄)−c/24 (4.25)

and

Sdip
2 =

πcL

2β
− πc

12β
min (D + 2L− 2t, 2t−D) + S0

2 (4.26)
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in agreement with (3.37) for ccurrents � c. (We have dropped a term ∼ c log 2 which is

subleading in the scaling limit β → 0.)

Observe in particular that a light cone singularity that leads to a second Rényi in full

agreement with the quasiparticle picture could only come from saddlepoints with action

proportional to τ − 1
τ̄ . These are the kind of holomorphically factorizing saddles that were

sought, but not found, in [51]. It was pointed out in [51] that such saddlepoints would never

dominate the classical action in Euclidean signature, but they can dominate in Lorentzian

signature.

4.3 Large-c CFT

We will now discuss how these results are reproduced in large-c CFT.

The universality class of CFTs with a semiclassical holographic dual is not charac-

terized precisely, but it must satisfy at least two simple criteria (discussed for example

in [52, 53]). First, these theories have c� 1. The central charge is related to gravitational

parameters by c = 3`AdS/(2GN ), where `AdS is the anti-de Sitter radius and GN is the

three-dimensional Newton’s constant, so the semiclassical limit on the gravity side is the

c → ∞ limit in CFT. Second, the spectrum of low-dimension operators must be sparse

— each low-dimension operator corresponds to a light field on the gravity side, and the

number of such fields should be finite as c → ∞. Exactly how to define the sparseness

condition is not known (except for the partition function [53]), but we will assume that

the spectrum is sufficiently sparse to suppress certain contributions to the conformal block

expansion.

In section 4.1 we computed the holographic entanglement entropy of the offset interval

in the thermal double model. As discussed in 3.2, the entanglement and Rényi entropies

are obtained in terms of the four-point twist correlator in the plane Gn(x, x̄) in (3.10) via

Sn =
1

1− n
log Icylinder

n (4.27)

with

Icylinder
n =

(
β

π
sinh

πL

β

)−8hn

|xx̄|2hnGn(x, x̄) . (4.28)

The general semiclassical conformal block analysis to evaluate Gn(x, x̄) for CFTs with an

holographic dual has been performed in [54]. There it was argued that, at leading order

in c, the four-twist correlator is given by the dominant contribution between the s- and t-

channel semiclassical identity contributions. That is, in these theories, the Rényi entropies

are universal, with the twist correlator given by

Gn(x, x̄) = max (F0(cn, hn;x)F0(cn, hn; x̄), F0(cn, hn; 1− x)F0(cn, hn; 1− x̄)) , (4.29)

with F0 the vacuum block for the algebra Virn/Zn. For n = 2, a complete derivation of

this formula with a suitable sparseness assumption is given in [53], and the results match

exactly with the gravity analysis of the 2nd Rényi in section 4.2. For general n, additional

caveats apply to (4.29), as discussed in [54]. Assuming that it is correct, the right-hand side
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can be evaluated in the limit n → 1 following [54], with the result that only the identity

operator contributes:

Gn(x, x̄) ≈ [min{xx̄, (1− x)(1− x̄)}]−
c
6

(n−1) (n→ 1) . (4.30)

There is no quasiparticle singularity.

Applying this result to the computation of the entanglement entropy of the offset

intervals, one immediately recovers the analysis of the previous section and the holographic

result (4.12). For all times, in the scaling limit L� β, Gn(x, x̄) is given by the s-channel

semiclassical identity block, resulting in the constant entanglement entropy

S = 2S0 +
2πcL

3β
. (4.31)

A similar analysis applies to the 8-point function in the thermal double model for the

quench. Once again the n → 1 limit of the twist correlator in a large-c CFT is given by

maximizing the identity contribution over OPE channels. Each OPE channel corresponds

to a choice of Ryu-Takayanagi geodesics connecting the 8 twist insertions, so this CFT

result is identical to the gravity prediction.

4.4 The D1–D5 CFT

A specific realization of AdS3/CFT2 duality, and hence an in-principle non-perturbative

formulation of quantum gravity, is afforded by the D1–D5 CFT. We will use this example to

illustrate how memory effects in the entanglement depend on N , β, and the CFT coupling

constant.

This system is realized in type IIB string theory compactified on a circle S1 times

M4, with M4 either a four-torus or a K3 surface, with N1 D1-branes wrapped around

the circle and N5 D5-branes wrapped around the entire compact product space. The near

horizon geometry is AdS3×S3×M4, and one can formulate a two-dimensional CFT at the

conformal boundary of the AdS3. This CFT has central charge c = 6N1N5 and N = (4, 4)

supersymmetry. (For reviews, see [55, 56].)

The moduli space of the CFT is twenty-dimensional and includes a special point known

as the “orbifold point.” In the torus case, the theory at this point is a symmetric orbifold

CFT with target space (T 4)N1N5/SN1N5 . This is analogous to free super Yang-Mills theory

in the AdS5/CFT4 duality, and the CFT at this point is N ≡ N1N5 copies of a c = 6 free

CFT (the seed theory), composed of 4 real bosons and their fermionic superpartners, with

an SN orbifold permuting the N copies. Though built out of free theories, the symmetric

orbifold structure couples the various conformal families of the seed theories so that at

large N the quasiparticle picture of entanglement propagation is qualitatively altered, as

we see in the following subsection.

Free theory. We will focus on the second Rényi entropy of the offset intervals in the

thermal double, since, as discussed in section 3.3, this is fixed by the torus partition func-

tion. The spectrum of the orbifold is known exactly [57], and in appendix A, we extract
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from this the vacuum contribution to the torus partition function as q → 0, q̄ → 1:

Zorbifold(q, q̄) ≈ 1

N !
q−c/24(q̄′)−c/24 (4.32)

The limit leading to (4.32) is taken with N held fixed. This theory has a very large number

of conserved currents; it is current dominated and ccurrents = c. However, the orbifolding

leads to the 1/N ! prefactor, which means there are far fewer currents at large N than in a

simple product of free theories.

In the scaling limit β → 0 with N held fixed, we can ignore the coefficient as we did in

section 3.3, and the orbifold theory exhibits the quasiparticle dip in the 2nd Rényi entropy.

On the other hand, the coefficient of the quasiparticle singularity in (4.32) is suppressed

by N ! ∼ eN logN . Therefore to see the quasiparticle behavior, we must take

t

β
,
L

β
,
D

β
� log c . (4.33)

At shorter times, the large coefficient suppresses the quasiparticle dip and (4.32) may not

be the dominant term.

The free CFT is believed to be dual to a string theory with vanishing string tension

(see for example [58, 59]). It would be interesting to interpret (4.33) in the string theory.

Curiously, the time scale β log c is the scrambling time in the gravity limit, but here plays

a different role.

Deformed theory. Semiclassical gravity is far in moduli space from the free orbifold

CFT. Roughly speaking, the coupling constant in the CFT is an exactly marginal defor-

mation that corresponds to the string tension, and gravity is a good approximation when

the string tension is very large.

Little is known about how to follow this deformation in general, though many quantities

protected by supersymmetry can be matched in the two limits. To understand the behavior

of the second Rényi entropy, we are interested in the spectrum of conserved currents as a

function of the coupling constant. In the free limit, it is given by (4.32). In the gravity limit,

conserved currents correspond to massless gauge fields in supergravity, and the only such

fields are the graviton, gravitino, and gauge fields required by (4, 4) supersymmetry. Thus

all other conserved currents contributing to (4.32), with dimension (0, h̄) at zero coupling,

must pick up a non-zero left-moving conformal weight when we move to the gravity point

in moduli space.

It seems likely that all of these currents are lifted even at leading order in the defor-

mation away from the free orbifold point, since they are not protected. This was recently

confirmed explicitly for the low-lying currents using conformal perturbation theory [60].

The leading deformation, which has been studied perturbatively for example in [61–65], is

by an SN -twist operator, so it exists for any N ≥ 2. Therefore, we expect the CFT defined

by a small deformation of the orbifold theory with c ≥ 12 to be a tractable example of a

CFT with ccurrents < c.
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5 Conclusion

We have argued that there is a qualitative difference in the entanglement properties of

theories with ccurrents = c and ccurrents < c. Although CFTs with fewer conserved currents

seem more generic in some sense, most of the well known CFTs in 1+1 dimensions are

rational and therefore ccurrents = c. What is the simplest theory with ccurrents < c? We do

not have an answer to this question, but will suggest two candidates.11

The first natural candidate is a theory with several scalars, and an arbitrary quartic

potential. If the quartic potential is O(N) invariant then the fixed points are well studied,

but for a generic potential, the symmetry is reduced. If such a theory has a fixed point

with reduced symmetry then it seems likely to have ccurrents < c.

Another class of well known examples are supersymmetric sigma models with a Calabi-

Yau target space. A generic Calabi-Yau has no isometries, so the sigma model has only

the conserved currents required by superconformal symmetry. A simple example of this

type is the minimal version of the D1-D5 CFT discussed in section 4.4. It is a deformation

of the orbifold theory with target (T 4)2/Z2. This theory has central charge c = 12. The

N = (4, 4) superconformal algebra consists of the stress tensor, four R-currents, and four

supercurrents, so assuming that other currents are lifted by the deformation, ccurrents ≤
9 < c and it follows that the entanglement entropy differs from the quasiparticle picture.

Another question left open by our analysis is how to compute SA∪B(t) in theories

that have ccurrents < c < ∞. We have argued that, in the dip regime, the entanglement

entropy differs from the quasiparticle value, since the Rényi entropies disagree with the

quasiparticle prediction. It would be very interesting to compute the vacuum contribution

explicitly, which is the universal answer in the holographic limit. For theories with no

extended algebra it depends only on the central charge.

The suppression or absence of the dip in the two-intervals entanglement entropy after

a quench might at first seem to clash with holographic computations for D < L [19–21].

In fact, for small separation between the intervals, the holographic mutual information

after a quench has a spike (or a bump in the case of a local quench) at early times, which

seems in qualitative agreement with the quasiparticle picture [19–21]. This spike though

has a different origin than the dip, and can be traced in the growth of SA∪B to saturation.

For D < L, SA∪B starts growing as 2t for t < D/2, and continues ∼ t till saturation at

time L − D/2. When combined with the growth ∼ t till t = L/2 of the single interval

entanglement entropies SA, SB, this effect produces a spike between D/2 < t < L − D/2
in the mutual information.

In the main text, we have discussed extensively global quenches in the boundary

state [15–17] and thermal double model [14], but similar analysis and conclusions hold

for the local ‘joining’ quenches discussed in [19, 66]. These describe the process of two

semi-infinite lines joined at their endpoints at an instant of time and subsequently evolving

as a connected, infinite system. The computation of the two-intervals entanglement and

Rényi entropies in these systems can be reduced to that of a four-point function of twist

operators in the UHP and thus proceeds in an analogous way to that presented in section 2.

11We thank Leonardo Rastelli for discussions about this question.
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Closely related systems are the heavy local operator quenches considered in [19, 67–69].

These are systems quenched by the insertion of a heavy local primary with weights h, h̄ ∼ c
that produces a localized excitation. The operator quench with h = h̄ = c/32 has the

same energy-momentum tensor for t > 0 as the Calabrese-Cardy ‘joining’ quench [66]

and, for intervals sufficiently distant from the quench, exhibits the same evolution for the

entanglement entropy. Therefore, the same observations and conclusions apply, and, in

particular, our results resolve the apparent discrepancy between the quasiparticle picture

and the holographic calculations observed in [19]. Moreover, in the limit of large-c, the

absence of the dip in SA∪B after a heavy local operator quench can be immediately inferred

from the results of [70] for the six-point function of two heavy and four light operators.

The implications of our methods might also be relevant to the light operator quenches

studied in [34, 47, 71–73]. Similarly, we expect our observations on light cone singularities

to be important in the computation of the entanglement negativity of two disjoint intervals

A,B after a global or local quench [23, 74–76], which in [23, 76] was found to be exactly

3/4 of the quasiparticle mutual information I(A,B).
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A Vacuum character of the symmetric orbifold

In this appendix we calculate the vacuum character of the symmetric orbifold CFT with

target space (T 4)N/SN , following [57–59], and find the asymptotics claimed in section 4.4.

The theory on T 4 has four free bosons and four free fermions, and therefore central
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charge 6. The vacuum character of this seed theory in the R sector is

χR(q, y) =

∞∑
n=0

∑
`∈Z

c(n, `)qny` (A.1)

= (y − 2 + y−1)

∞∏
n=1

(1− yqn)2(1− y−1qn)2

(1− qn)4
, (A.2)

where y corresponds to the chemical potential. The coefficients c(n, `) defined by this

expansion can be used to construct the generating function of the NS-sector vacuum char-

acters in the orbifold theories with c = 6N [58, 59]:

∞∑
N=0

pNχvac
N (q) =

∞∏
n=0

∏
`∈Z

(1 + (−1)`pqn+`/2+1/4)−c(n,`) , (A.3)

where we have set y = 1. Our goal is to find χvac
N (q) as q → 1.

Define the NS vacuum character of the seed theory (TrNSq
L0−c/24),

χ(q) =

∞∑
n=0

∑
`∈Z

c(n, `)qn+`/2+1/4(−1)`+1 (A.4)

=
θ3(τ)2

η(τ)6
(A.5)

= q−1/4(1 + 4q1/2 + 10q + 24q3/2 + 55q2 + · · · ) (A.6)

and the alternating character (TrNS(−1)F qL0−c/24):

χ̃(q) =

∞∑
n=0

∑
`∈Z

c(n, `)qn+`/2+1/4 (A.7)

=
θ4(τ)2

η(τ)6
(A.8)

= q−1/4(1− 4q1/2 + 10q − 24q3/2 + 55q2 + · · · ) (A.9)

Using these we can re-express the generating function (A.3) as

∞∑
N=0

pNχvac
N (q) = exp

 ∑
k=1,3,...

pk

k
χ(qk) +

∑
k=2,4,...

pk

k
χ̃(qk)

 (A.10)

As q → 1−,

χ(q) ∼ −τ2(q′)−1/4, χ̃(q) ∼ −4τ2 , (A.11)

and

χ(qk) ∼ −(kτ)2eiπ/(2kτ) , (A.12)

where q′ = e−2πi/τ . The first equation in (A.11) indicates that the seed theory has

ccurrents = c = 6.
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We are computing the limit q → 1− with N held fixed, so we can plug these asymptotics

into (A.10). The leading singularity comes from k = 1:

χvac
N (q) ∼ 1

N !
(q′)−N/4 . (A.13)

This is the result (4.32) used in the discussion of the second Rényi. The character (A.13)

is TrNSq
L0−c/24 in the orbifold. The full partition function Z(τ, τ̄) includes a sum over spin

structures, but the other terms are subleading in this limit.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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