2,672 research outputs found

    Synchrotron emission in molecular cloud cores: the SKA view

    Get PDF
    Understanding the role of magnetic fields in star-forming regions is of fundamental importance. In the near future, the exceptional sensitivity of SKA will offer a unique opportunity to evaluate the magnetic field strength in molecular clouds and cloud cores through synchrotron emission observations. The most recent Voyager 1 data, together with Galactic synchrotron emission and Alpha Magnetic Spectrometer data, constrain the flux of interstellar cosmic-ray electrons between ≈3\approx3 MeV and ≈832\approx832 GeV, in particular in the energy range relevant for synchrotron emission in molecular cloud cores at SKA frequencies. Synchrotron radiation is entirely due to primary cosmic-ray electrons, the relativistic flux of secondary leptons being completely negligible. We explore the capability of SKA in detecting synchrotron emission in two starless molecular cloud cores in the southern hemisphere, B68 and FeSt 1-457, and we find that it will be possible to reach signal-to-noise ratios of the order of 2−232-23 at the lowest frequencies observable by SKA (60−21860-218 MHz) with one hour of integration.Comment: 5 pages, 4 figures, accepted by Astronomy & Astrophysic

    Large scale GW calculations

    Full text link
    We present GW calculations of molecules, ordered and disordered solids and interfaces, which employ an efficient contour deformation technique for frequency integration, and do not require the explicit evaluation of virtual electronic states, nor the inversion of dielectric matrices. We also present a parallel implementation of the algorithm which takes advantage of separable expressions of both the single particle Green's function and the screened Coulomb interaction. The method can be used starting from density functional theory calculations performed with semi-local or hybrid functionals. We applied the newly developed technique to GW calculations of systems of unprecedented size, including water/semiconductor interfaces with thousands of electrons

    Nonempirical Range-separated Hybrid Functionals for Solids and Molecules

    Get PDF
    Dielectric-dependent hybrid (DDH) functionals were recently shown to yield accurate energy gaps and dielectric constants for a wide variety of solids, at a computational cost considerably less than that of GW calculations. The fraction of exact exchange included in the definition of DDH functionals depends (self-consistently) on the dielectric constant of the material. Here we introduce a range-separated (RS) version of DDH functionals where short and long-range components are matched using system dependent, non-empirical parameters. We show that RS DDHs yield accurate electronic properties of inorganic and organic solids, including energy gaps and absolute ionization potentials. Furthermore we show that these functionals may be generalized to finite systems.Comment: In press. 13 pages, 7 figures, 8 tables, Physical Review B 201

    A Finite-field Approach for GWGW Calculations Beyond the Random Phase Approximation

    Full text link
    We describe a finite-field approach to compute density response functions, which allows for efficient G0W0G_0W_0 and G0W0Γ0G_0W_0\Gamma_0 calculations beyond the random phase approximation. The method is easily applicable to density functional calculations performed with hybrid functionals. We present results for the electronic properties of molecules and solids and we discuss a general scheme to overcome slow convergence of quasiparticle energies obtained from G0W0Γ0G_0W_0\Gamma_0 calculations, as a function of the basis set used to represent the dielectric matrix

    Interstellar dust charging in dense molecular clouds: cosmic ray effects

    Get PDF
    The local cosmic-ray (CR) spectra are calculated for typical characteristic regions of a cold dense molecular cloud, to investigate two so far neglected mechanisms of dust charging: collection of suprathermal CR electrons and protons by grains, and photoelectric emission from grains due to the UV radiation generated by CRs. The two mechanisms add to the conventional charging by ambient plasma, produced in the cloud by CRs. We show that the CR-induced photoemission can dramatically modify the charge distribution function for submicron grains. We demonstrate the importance of the obtained results for dust coagulation: While the charging by ambient plasma alone leads to a strong Coulomb repulsion between grains and inhibits their further coagulation, the combination with the photoemission provides optimum conditions for the growth of large dust aggregates in a certain region of the cloud, corresponding to the densities n(H2)n(\mathrm{H_2}) between ∼104\sim10^4 cm−3^{-3} and ∼106\sim10^6 cm−3^{-3}. The charging effect of CR is of generic nature, and therefore is expected to operate not only in dense molecular clouds but also in the upper layers and the outer parts of protoplanetary discs.Comment: accepted by Ap

    Designing defect-based qubit candidates in wide-gap binary semiconductors for solid-state quantum technologies

    Full text link
    The development of novel quantum bits is key to extend the scope of solid-state quantum information science and technology. Using first-principles calculations, we propose that large metal ion - vacancy complexes are promising qubit candidates in two binary crystals: 4H-SiC and w-AlN. In particular, we found that the formation of neutral Hf- and Zr-vacancy complexes is energetically favorable in both solids; these defects have spin-triplet ground states, with electronic structures similar to those of the diamond NV center and the SiC di-vacancy. Interestingly, they exhibit different spin-strain coupling characteristics, and the nature of heavy metal ions may allow for easy defect implantation in desired lattice locations and ensure stability against defect diffusion. In order to support future experimental identification of the proposed defects, we report predictions of their optical zero-phonon line, zero-field splitting and hyperfine parameters. The defect design concept identified here may be generalized to other binary semiconductors to facilitate the exploration of new solid-state qubits.Comment: 23 pages, 5 figures, 6 tables, Supplementary Information is added at the en

    Cosmic-ray ionisation in circumstellar discs

    Get PDF
    Galactic cosmic rays are a ubiquitous source of ionisation of the interstellar gas, competing with UV and X-ray photons as well as natural radioactivity in determining the fractional abundance of electrons, ions and charged dust grains in molecular clouds and circumstellar discs. We model the propagation of different components of Galactic cosmic rays versus the column density of the gas. Our study is focussed on the propagation at high densities, above a few g cm−2^{-2}, especially relevant for the inner regions of collapsing clouds and circumstellar discs. The propagation of primary and secondary CR particles (protons and heavier nuclei, electrons, positrons, and photons) is computed in the continuous slowing down approximation, diffusion approximation, or catastrophic approximation, by adopting a matching procedure for the different transport regimes. A choice of the proper regime depends on the nature of the dominant loss process, modelled as continuous or catastrophic. The CR ionisation rate is determined by CR protons and their secondary electrons below ≈130\approx 130 g cm−2^{-2} and by electron/positron pairs created by photon decay above ≈600\approx600 g cm−2^{-2}. We show that a proper description of the particle transport is essential to compute the ionisation rate in the latter case, since the electron/positron differential fluxes depend sensitively on the fluxes of both protons and photons. Our results show that the CR ionisation rate in high-density environments, like, e.g., the inner parts of collapsing molecular clouds or the mid-plane of circumstellar discs, is larger than previously assumed. It does not decline exponentially with increasing column density, but follows a more complex behaviour due to the interplay of different processes governing the generation and propagation of secondary particles.Comment: 19 pages, 11 figures, accepted by A&
    • …
    corecore