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Dielectric-dependent hybrid (DDH) functionals were recently shown to yield accurate energy
gaps and dielectric constants for a wide variety of solids, at a computational cost considerably less
than that of GW calculations. The fraction of exact exchange included in the definition of DDH
functionals depends (self-consistently) on the dielectric constant of the material. Here we introduce
a range-separated (RS) version of DDH functionals where short and long-range components are
matched using system dependent, non-empirical parameters. We show that RS DDHs yield accurate
electronic properties of inorganic and organic solids, including energy gaps and absolute ionization
potentials. Furthermore we show that these functionals may be generalized to finite systems.

I. INTRODUCTION

To hasten the discovery of new materials with opti-
mal properties for applications such as optical and elec-
tronic devices, catalysis, quantum information, and pho-
tovoltaics, the reliance on theory to support and direct
experimental efforts is essential. The determination of
the ground and excited state electronic properties rele-
vant to such applications, require a high level of accu-
racy, ideally at a modest computational cost. Density
functional theory (DFT)1 has long been one of the main
methodologies of choice as it provides a reasonable com-
promise between accuracy and computational efficiency.
Some of the most accurate functionals include an ad-
mixture of local and nonlocal exchange and are referred
to as hybrid functionals.2 The latter have been widely
used for molecules and less so to model extended systems.
The slower adoption of hybrid functionals for condensed
phases is a consequence of using plane-wave basis sets
in most condensed matter calculations, and of the lack
of nonempirical parameters for constructing accurate hy-
brid functionals.3 Indeed the treatment of the non-local
exchange operator within periodic boundary conditions
by using a plane-wave basis set is computationally de-
manding. In the last decade, however, due in part to sev-
eral methodological advances,4–7 hybrid functionals have
been increasingly used to investigate a variety of periodic
systems within a plane-wave pseudopotential framework.

Addressing the need for improved accuracy of DFT
for condensed systems, a new class of functionals was
recently proposed, with parameters defined using the di-
electric constant of the system.8–13 This class of func-
tionals, referred to as dielectric-dependent hybrid (DDH)
functionals, can yield accurate electronic structures of
solids, at considerably less cost with respect, e.g. to
GW based methods. Among DDHs, are those where the
dielectric constant is determined self-consistently,8,9,12

which are referred to as sc-hybrid.12 This sc-hybrid
functional has found recent use in the study of pris-
tine oxides,12,14,15 defects in oxides,16,17 nitrides,18,19

aqueous solutions,20 and spin-defects in wide band gap
semiconductors.21 The adaptation of non self-consistent

DDHs to a time-dependent framework was recently pur-
sued by Yang et al.,22 Ferrari et al.,23 and Refaely-
Abramson et al.,24 with the goal of obtaining optical
spectra of solids. Another recent study by Shimazaki
et al.25 explored the possibility of defining a local DDH
functional where the fraction of exact-exchange is site de-
pendent. Though their initial prescription using atom-
centered basis functions is perhaps oversimplified, the
proposal of Ref 25 is an interesting step towards describ-
ing heterogenous systems with DDH functionals.

In this paper we introduce a range-separated (RS) ver-
sion of DDH functionals where short and long-range com-
ponents are matched using system dependent, nonempiri-
cal parameters. We assess the accuracy of RS-DDH func-
tionals for the electronic properties of inorganic materi-
als and molecular crystals, and we present calculations
for energy gaps and absolute ionization potentials. We
show that range-separated DDH functionals are superior
to full-range DDH functionals for the energy gaps of inor-
ganic solids, while both full and range separated hybrids
yield equally accurate results for the gaps and ionization
potentials of molecular crystals. In addition, we show
that RS-DDH can be generalized to finite systems.

The rest of the paper is organized as follows. Section II
describes the range-separated DDH functional along with
the computational details used in this work. Section III
presents results obtained using nonempirical parameters
for the range-separated and full-range DDH functionals
for a set of inorganic solids, molecular crystals, and finite
systems. Section IV summarizes our results, and provides
our conclusions.

II. METHOD

A. Range-separated dielectric-dependent hybrid
functionals

We use a Generalized Kohn Sham (GKS) frame-
work where we determine an effective screening of the
Coulomb potential by computing the dielectric response
of the system.
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The GKS nonlocal potential v
GKS

(r, r′) entering the
Kohn-Sham (KS) Hamiltonian is given by:

v
GKS

(r, r′) = vH(r) + vx(r, r′) + vc(r) + vext(r) (1)

where vH(r) is the Hartree, vx(r, r′) is the nonlocal
exchange potential, vc(r) is the correlation potential,
and vext(r) is the attractive Coulomb potential to the
nuclei.

The nonlocal exchange potential vx(r, r′) is partitioned
into long-range (lr) and short-range (sr) components
where α and β, define the fraction of exact exchange ad-
mixed to semilocal exchange in the lr and sr components,
respectively:

vx(r, r′) = αvlr−ex
x (r, r′;µ) + βvsr−ex

x (r, r′;µ) (2)

+(1− α)vlr
x (r;µ) + (1− β)vsr

x (r;µ) .

The screening parameter µ defines how the lr and sr com-
ponents are bridged. We use the error function to define
the range separation of the Coulomb interaction, namely:

vlr−ex
x (r, r′;µ) = −ρ(r, r′)

erf(µ|r− r′|)
|r− r′|

(3)

and

vsr−ex
x (r, r′;µ) = −ρ(r, r′)

erfc(µ|r− r′|)
|r− r′|

, (4)

where ρ(r, r′) is the density matrix. The semilocal
exchange potentials, vsr

x (r;µ) and vlr
x (r;µ), depend only

on the density ρ(r) and its gradient. Here we adopt the
PBE26 approximation of the semilocal exchange vx(r)
and correlation vc(r). Many of the commonly used
exchange functional forms may be recovered from Eq. 2.
For example, when α = β = µ = 0, one obtains the PBE
semilocal functional. If α = 1, β = 0, and µ → ∞ one
obtains the KS equations with the exact-exchange poten-
tial (EXXc27). If instead α = 0.25, β = 0, and µ → ∞
the PBE0 hybrid functional is recovered. Short-range
hybrid functionals (α = 0) may also be easily obtained
e.g. HSE0628 where β = 0.25 and µ = 0.11 bohr−1

or sX-LDA29 where β = 1, α = 0, and the Thomas-
Fermi screening function is used instead of the error
function30. Examples of long-range hybrid functionals
(α 6= 0) include the empirical CAM-B3LYP functional,31

where α = 0.46, β = 0.19, µ = 0.33 bohr−1, as well as
LC-µPBE,32 where α = 1, β = 0, and µ = 0.4 bohr−1.
The screened-exchange methodology of Robinson et
al.33 and subsequent works,29,34,35 present a similar
approach to the description of electronic screening, but
the function used to partition the Coulomb operator
and the asymptotic long-range limit of the Coulomb
potential differ from those used here.
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FIG. 1: (Color online) Plot of the signed relative error
in the electronic gap (Eg) for a set of semiconductors
and insulators (see Table II) computed at the PBE0
(red circles and line) and sc-hybrid (blue circles and

line) levels of theory as a function of the experimental
electronic dielectric constant ε∞. The CoO material was

removed from this analysis since the sc-hybrid
functional appears to be ill-suited for systems with

localized d-electrons at the valence band edge.

The goal of the present work is to generalize the
self-consistent dielectric-dependent hybrid functional (sc-
hybrid)12 to a range-separated form. To do so we first
compare results obtained with the PBE0 global hybrid
(α = 0.25) and the sc-hybrid, where the global fraction of
exchange is inversely proportional to the self-consistently
determined electronic dielectric constant (ε∞), namely

α =
1

ε∞
. (5)

As discussed in Ref. 12, Eq. (5) can be obtained
from the static COHSEX self-energy,36 by approximat-
ing the screened Coulomb interaction W with an effec-
tive screened interaction, where the inverse microscopic
dielectric function is replaced by the inverse macroscopic
dielectric constant:

W (r, r′) =

∫
dr′′ε−1(r, r′′)v(r′′, r′) ≈ α

|r− r′|
. (6)

We previously found that for a set of diverse semi-
conductors and insulators the mean absolute relative er-
ror (MARE) in the computed energy gaps was ∼ 17%
and ∼ 7.0% when using PBE0 and the sc-hybrid, re-
spectively. Fig. 1 shows the signed relative error of the
predicted electronic gaps with respect to experiment, as
a function of the experimental dielectric constant. For
ε∞ > 4 the PBE0 (sc-hybrid) over- (under-) estimates
the experimental energy gap, and vice versa for ε∞ < 4.
Hence for systems with ε−1

∞ = α < (>) 0.25, increasing
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(lowering) α from 0.25 may improve the agreement with
expereimental photoemission gaps.

Based on this observation, we defined a new class of
DDH functionals having the general form of Eq. (2),
where we set the long range fraction α = ε−1

∞ and the
short range fraction β = 0.25 (as in PBE0). Within this
framework, the approximate W (r, r′) becomes:

W (r, r′) ≈ ε−1
∞

|r− r′|
+ (β − ε−1

∞ )
erfc(µ|r− r′|)
|r− r′|

, (7)

where the first term on the right hand side of Eq. (7) is
the same as the sc-hybrid functional of Ref. 12 and the
second term is a short-range correction to the Coulomb
potential. The numerator of Eq. (7) is plotted as a func-
tion of µ in Fig. S1 of the Supplemental Material. Note
that the expression of Eq. (7) is general, and β is in
principle a parameter to be determined; here we chose
β = 0.25 based on the results of Fig. 1. The plot in-
dicates that a value of µ in the range (0,+∞) exists
which may improve the description of the electronic gaps
with respect to both PBE0 and sc-hybrid functionals. We
note that the long-range limit of the RS DDH functional
defined here is physically correct; however the short-
range limit of the exchange is not correctly unscreened,
but rather attenuated by the PBE0 fraction of exchange
(0.25). This attenuation factor of the exchange amounts,
in practice, to introducing an approximate form of short-
range correlation in the functional.

We explored three different non-empirical choices of
µ which do not require any optimization procedure, nor
calculations for charged systems, unlike e.g. other def-
initions of range-separated hybrid functionals,37–39 or
Koopman complaint functionals.40–42

(I.) Assuming that a homogeneous spatial distribution
of the valence electrons is a good approximation of the
valence charge density of the system, we defined a screen-
ing length related to the average volume occupied by a
valence electron:

µWS =
1

rs
=

(
4πnv

3

) 1
3

(8)

where nv is the valence electron density, and rs is the
Wigner-Seitz radius.

(II.) Alternatively, we used the Thomas-Fermi screen-
ing parameter (µTF):

µTF =
1

2
kTF =

(
3nv
π

) 1
6

(9)

where kTF = 2
(

3nv
π

) 1
6 is the Thomas-Fermi screening

length. Note that in the definition of both µWS and µTF ,
atomic units are used,43 and µTF = 0.781593

√
µWS.

(III.) Finally we defined a range separation parameter
µ obtained from the long-range decay of the diagonal el-
ements of the dielectric matrix, as computed from first
principles using the linear response techniques proposed
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FIG. 2: (Color online) Plot of the inverse diagonal
dielectric function (ε−1) in Fourier space as a function
of G2 for a prototypical insulator MgO (red triangles
and line) and a prototypical small gap semiconductor

AlP (blue circles and line). The dashed lines correspond
to ε−1

∞ screening that is seen over all inter-electronic
distances for the global sc-hybrid.

in Ref. 44 and implemented in the WEST code.45 Fig. 2
shows the dielectric function (ε−1(G,G′)) computed ne-
glecting the non-diagonal components for a prototypical
semiconductor AlP, and a prototypical insulator MgO.
We used two model functions to fit ε−1(G,G′) and ex-
tract screening parameters that we collectively refer to
as µPDEP

46: the Thomas-Fermi screening model (corre-
sponding to a Yukawa potential) and the complementary
error function. Using the former, the screened Coulomb
interaction is:

W (r, r′) ≈ ε−1
∞

|r− r′|
+ (1− ε−1

∞ )
e−kTF |r−r

′|

|r− r′|
(10)

The fit of the dielectric function was carried out in
Fourier space:

ε−1
TF (G) = ε−1

∞ + (1− ε−1
∞ )

G2

G2 + k2
TF

. (11)

If instead of the TF screening model, the complementary
error function is used to fit ε−1(G,G′), we obtain:

ε−1
erfc(G) = ε−1

∞ + (1− ε−1
∞ )(1− e−

G2

4µ2 ). (12)

The performance of the RS DDH functional obtained
by substituting in Eq. (2) α = ε−1

∞ , β = 0.25 and for
each of the three µ parameters described above (namely
µWS, µTF and µPDEP) will be discussed in Section III
A for inorganic semiconductors and insulators; and in
Section III B for molecular crystals. We will show that
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our results are largely insensitive to the three choices of µ,
which turn out to be similar to each other for all systems
examined here.

B. Computational details

The evaluation of the electronic dielectric constant was
carried out within an all-electron approach using the cou-
pled perturbed Kohn-Sham (CPKS)47,48 equations (the
coupled-perturbed Hartree-Fock method (CPHF)49–51

extended to DFT) as implemented in the CRYSTAL1452

electronic structure package, where we explicitly com-
puted ε beyond the random phase approximation (RPA)
by evaluating fxc = δvxc

δρ , i.e. the functional derivative of

the nonlocal potential vxc. The effect of including fxc in
the evaluation of ε was discussed in Ref. 12. The dielec-
tric constant determined self-consistently was then used
in the range-separated functional of Eq. (7) as imple-
mented in both the CRYSTAL14 and in the Quantum-
ESPRESSO package.53 We note that a denser k-point
mesh is required for the convergence of the electronic di-
electric constants than for the KS eigenvalues (see Sup-
plemental Material for details).

The WEST45 code was used to compute the dielectric
matrix using 1024 eigenpotentials for each system con-
sidered here, unless otherwise noted. These calculations
were carried out at the Γ-point for a supercell of appro-
priate size.

For the all-electron calculations, we used Gaussian ba-
sis sets, modified starting from Alhrich’s def2-TZVPP
molecular basis,54 with the only exception of rare gases
Ne and Ar basis sets, which were modified starting from
the def2-QZVPD set.55 For Co and Ni we used the
def2-TZVP modified basis sets of Bredow et al.56 For
the plane-wave calculations, we adopted norm-conserving
pseudopotentials of the Troullier-Martins type,57 where
for the transition metal atoms, unless otherwise noted,
the (n − 1)s and (n − 1)p electrons were included in
the valence (n is the highest principal quantum number).
Plane-wave kinetic energy cutoffs and localized Gaussian
basis sets employed here can be found in the Supplemen-
tal Material. All calculations were performed at the ex-
perimental geometry and T = 0K, without consideration
of zero-point vibrational effects. In the case of transition
metals we excluded any semi-core (n 1)s and (n 1)p elec-
trons from the definition of the valence electron density
that is used to determine µWS and µTF.

To obtain the ionization potential of molecular crys-
tals, both all-electron bulk calculations with no surface
present were used, as well as slab model calculations.
The latter, carried out using a plane-wave pseudopoten-
tial basis set, were necessary to set an absolute scale with
respect to vacuum, through electrostatic potential align-
ments. The supercell size in the direction perpendicular
to the interface was chosen so as to ensure a converged
value of the electrostatic potential (see the Supplemental
Material for details).
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FIG. 3: (Color online) Screening parameters µ (as
defined in the text) are plotted versus the inverse
electronic dielectric constant for a set of inorganic
semiconductors and insulators. The Wigner-Seitz

screening parameter µWS (red open squares) Eq. (8),
the Thomas-Fermi screening parameter µTF (blue open

circles) Eq. (9), and µerfc-fit (black filled triangles)
obtained from a fit to Eq. (12), are shown.

In our calculation of gas phase ionization potentials
discussed in Section III C, a plane-wave basis was used
along with a Makov-Payne58 correction to properly align
the orbital eigenvalues with the vacuum level position.
Molecular polarizabilities were evaluated at the PBE
level of theory. Although the values of the polarizabil-
ity varies with respect to the level of theory applied, the
inverse cube root used to define the inverse molecular
polarizability radius exhibits a negligible variation with
respect to the level of theory. The screening parameters
determined from the optimally tuned range-separted hy-
brid (OT-RSH) procedure described in Ref. 38 were eval-
uated in a planewave basis with a Makov-Payne correc-
tion applied, using the Quantum-ESPRESSO package.

III. RESULTS AND DISCUSSION

A. Inorganic semiconductors and insulators

The non empirical values of the screening parameters
for a diverse set of inorganic semiconductors and insula-
tors as obtained from Eq. (8) and Eq. (9) are provided
in Table I. For a subset of systems the screening param-
eters were also computed by fitting the long-range decay
of the dielectric function to either Eq. 11 or to Eq. 12,
and these are listed under the column heading µPDEP.
The parameters µPDEP are in general larger than µWS

and µTF, which are similar to each other. However as
we will see below, functionals defined with each of these
three choices yield very similar results for the electronic
gaps. A graphical comparison of screening parameters as
a function of the dielectric constant is given in Fig. 3.
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TABLE I: The dielectric constant (ε∞) determined
self-consistently as described in Ref. 12 for the set of

semiconductors and insulators listed in the first column,
is given in column 2. The screening parameters (µ) used
in the RSH functional form of Eq. (7) are listed in units

of bohr−1 in columns 3-6. (See text)

µPDEP︷ ︸︸ ︷
ε∞ µWS µTF µerfc-fit µTF-fit

Si 11.76 0.50 0.55 0.64 0.64

AlP 7.23 0.50 0.55 0.65 0.64

SiC 6.50 0.62 0.62 0.77 0.77

TiO2 6.56 0.68 0.65

NiO 5.49 0.82 0.71

C 5.61 0.76 0.68 0.93 0.97

CoO 4.92 0.78 0.69

GaN 5.14 0.60 0.61

ZnS 4.95 0.65 0.63

MnO 4.45 0.72 0.66

WO3 4.72 0.66 0.63

BN 4.40 0.75 0.68 0.91 0.95

HfO2 3.97 0.66 0.63

AlN 4.16 0.49 0.55

ZnO 3.46 0.78 0.69

Al2O3 3.01 0.71 0.66

MgO 2.81 0.64 0.63 0.75 0.72

LiCl 2.77 0.53 0.57

NaCl 2.29 0.49 0.54 0.63 0.64

LiF 1.86 0.68 0.64 0.80 0.83

H2O 1.68 0.55 0.58 0.52 0.53

Ar 1.66 0.52 0.56 0.72 0.73

Ne 1.21 0.61 0.61 0.83 0.89

Photoemission gaps of inorganic semiconductors and
insulators59 computed with the µ parameters of Table I
are reported in Table II. For most systems, irrespective
of the choice of the system dependent screening parame-
ter µ, the RSH functional yields improved electronic gaps
over the already accurate full-range sc-hybrid functional.
The only exceptions, are some transition metal oxides
where partially occupied d-orbitals dominate the charac-
ter of the valence band–most notably CoO as well as FeO
(not shown) and to a lesser extent NiO and MnO60. If
these systems are not included in the assessment of the
RSH functional quality, a more noticeable improvement
is obtained, as shown in Table S3, and by comparison
with self-consistent GW results from Shishkin et al.61

(see column 7 of Table II). As shown in Table S3, for
this subset of solids the MARE for all definitions of µ are
lower than that of the sc-GW results.

In the case of µPDEP, we only tabulate the computed
electronic gaps for the complementary error function fit,
using Eq. (12), labeled as µerfc-fit in Table II since those

obtained from fitting to the Thomas-Fermi screening
model (Eq. (12)) are nearly identical. Overall the RSH
results using µerfc-fit appear to be very similar to those
of the sc-hybrid functional.

The small differences between the MAEs of results ob-
tained with the various choices of µ warrant further anal-
ysis to determine whether these apparent differences are
statistically meaningful. We determined the confidence
interval over which one methodology MAE is statistically
different from another one by performing a Wilcoxon
signed-rank test85 between pairs of methods; a p-value
below 0.0586 was chosen to indicate that indeed the two
sets of results exhibit different MAEs (i.e. differences are
not due to chance). We found that the p-values computed
between the MAE obtained with different choices of µ are
all larger than 0.05, indicating that the three choices of µ
yield the same result. For any of the RS-DDH functionals
compared to the global sc-hybrid or PBE0 functioinal, all
p-values are below 0.05 indicating that the improvement
in the MAE of RSH functionals relative to sc-hybrid or
PBE0 is statistically significant. For a summary of all
p-values between pairs of methods for the full set of 23
systems listed in Table II and for a subset of these solids
where transition metal oxides are removed, see Table S4
and Table S5, respectively, in the Supplemental Material.

To assess how the electronic gap depends on the sr frac-
tion of exchange we examined the gap dependence for two
systems with ε > 4 and ε < 4, respectively. In Fig. 4 we
set α = ε−1

∞ in the RSH functional form and we show the
behavior of the signed electronic gap error as a function
of µ and β. The prototypical semiconductor (AlP) and
insulator (MgO) show opposite behaviors and the curva-
ture of the minimum error (white region) is concave for
the former and convex for the latter. As µ → ∞ the
sc-hybrid functional is recovered and an overestimation
(underestimation) of the gap for insulating MgO (semi-
conducting AlP) is obtained.

B. Molecular Crystals

The dielectric constants determined self-consistently
for a set of molecular crystals are shown in Table III
along with the screening parameter µTF, which is found
to be nearly constant at 0.58 bohr−1 and µerfc-fit, which
is similar albeit slightly smaller than µTF. The screening
parameters µ are shown as a function of ε−1

∞ in Fig. 5.
Comparison between different levels of theory for the
computed dielectric constants are shown in Table S2 of
the Supplemental Material. In general, the PBE results
yield the poorest agreement with experiment, with PBE0
showing a marked improvement, and the DDH function-
als performing the best.

For a subset of optically anisotropic molecular crys-
tals, we compare in Table IV the dielectric tensor
components computed at different levels of theory with
that obtained experimentally. As expected, the values
of the tensor components vary depending on the level of
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TABLE II: The Kohn-Sham (KS) energy gaps (eV) evaluated with hybrid functionals are compared with the
experimental (Exp.) electronic gaps for a wide range of semiconductors and insulators. The experimental values
correspond to either photoemission measurements or to optical measurements where the excitonic contributions
were removed, with alumina being the only exception. The KS gaps were computed as the single particle energy

difference of the conduction band minimum and the valence band maximum. The sc-hybrid heading refers to hybrid
calculations where the fraction of exact-exchange is the self-consistent ε∞. The RSH columns correspond to the

electronic gap evaluated with the range separation scheme described in Section II, and the screening parameters µWS

(Eq. 8), µTF (Eq. 9), and µerfc-fit (Eq. 12). The self-consistent quasiparticle (scGW) gaps are taken from Ref. 61.
ME, MAE, MRE, and MARE are the mean, mean absolute, mean relative, and mean absolute relative error,

respectively. The experimental geometry was used in all calculations. Note that CoO, NiO, and MnO are magnetic
with AFM-II magnetic ordering. The structure/polytype used for each system is the same as in Table I of Ref. 12.

PBE0 sc-hybrid RSH RSH RSH scGW 61 Exp.

µWS µTF µerfc-fit

Si 1.75 0.99 1.03 1.02 1.01 1.24 1.1762

AlP 2.98 2.37 2.43 2.42 2.40 2.57 2.5163

SiC 2.91 2.29 2.32 2.32 2.31 2.53 2.3964

TiO2 3.92 3.05 3.16 3.17 3.365

NiO 5.28 4.11 4.45 4.51 4.366

C 5.95 5.42 5.44 5.45 5.43 5.79 5.4867 a

CoO 4.53 3.62 3.92 3.98 2.571

GaN 3.68 3.26 3.30 3.30 3.27 3.2972

ZnS 4.18 3.82 3.85 3.86 3.60 3.9162

MnO 3.87 3.60 3.65 3.49 3.973

WO3 3.76 3.47 3.49 3.49 3.3873

BN 6.51 6.33 6.33 6.34 6.33 6.59 6.474

HfO2 6.65 6.68 6.67 6.67 5.8475

AlN 6.31 6.23 6.22 6.23 6.2876

ZnO 3.41 3.78 3.75 3.67 3.2 3.4477

Al2O3 8.84 9.71 9.63 9.61 8.878

MgO 7.25 8.33 8.23 8.22 8.27 8.12 7.8379

LiCl 8.66 9.62 9.52 9.54 9.480

NaCl 7.26 8.84 8.60 8.66 8.71 8.681

LiF 12.18 15.69 15.24 15.18 15.42 14.5 14.282

H2O 7.92 11.49 10.89 10.94 10.84 10.983

Ar 11.20 14.67 14.12 14.20 14.41 13.9 14.284

Ne 15.20 23.67 21.44 21.44 22.28 21.4 21.784

ME (eV) -0.40 0.32 0.18 0.19 –

MAE (eV) 1.08 0.42 0.29 0.30 –

MRE (%) 6.2 3.7 3.4 3.5 –

MARE (%) 17.1 7.5 6.4 6.5 –

a The exp. QP gap reported here does not account for the ZPE gap renormalization, which has been shown to be nonnegligible for
diamond.68–70

theory, but they all exhibit similar errors with respect to
experiment. At variance with inorganic materials,12 the
dielectric constant of organic crystals shows a weaker
dependence on the functional used. A notable exception
is the charge-transfer molecular crystal DBTTF-TCNQ,
where along the charge transfer direction, εxx(∞) varies
from 42.38 (PBE) to 11.08 (PBE0). Clearly for charge-
transfer molecular crystals the use of a self-consistently
determined dielectric screening and the corresponding

set of wavefunctions are required to obtain accurate
dielectric constants.93

Below we discuss results obtained for electronic gaps,
and vertical ionization potentials obtained using the pa-
rameters reported in Table III.

The computed electronic gaps are compared with ex-
periment in Table V. In general all the DDH functionals
give similar results; the reason why there is almost no
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FIG. 4: (Color online) Signed electronic gap errors
(theory - experiment), in units of eV, for a RSH

functional defined by Eq. (7), as a function of two
parameters: µ and β (see text). Results are reported for

a prototypical insulator (MgO) with ε∞ < 4 and a
semiconductor (AlP) with ε∞ > 4. Positive (negative)
errors are indicated by shades of red (blue). The white
shaded area corresponds to zero error with respect to
experiment. The dashed black line corresponds to the
fixed parameter space explored in the RS-DDH form

where β = 0.25. The black circle and triangle indicate
where the values of µTF and µerfc-fit fall, respectively.

variability between the full-range and range-separated
hybrids for the organic molecular crystals stems from
their inverse dielectric constant (0.2-0.35) which is close
to the fraction of exchange adopted for the short-range
limit (0.25), making the lr and sr limits of RSH very
similar. To investigate the statistical significance of our
results, we performed a paired test between the MAEs
of the DDH functionals, showing that the MAEs of the
full-range and the range-separated DDH functionals are
not statistically significant (see Table S6 of Supplemental

TABLE III: The dielectric constant (ε∞) determined
self-consistently as described in Ref. 12 for the set of

molecular crystals listed in the first column, is given in
column 2. The screening parameters (µ) used in the
RSH functional form of Eq. (7) are listed in units of
bohr−1 in columns 3-4. All µ have units of bohr−1.

Crystalline

ε∞ µTF µerfc-fit

C14H8S4-C12H4N4 (DBTTF-TCNQ) 11.07 0.58

C60 (buckminsterfullerene) 4.29 0.61 0.57

C32H18N8 (phthalocyanine) 3.97 0.60

C24H8O6 (α PTCDA) 3.45 0.61

C22H14 (pentacene) 3.36 0.59

C20H12O2 (β quinacridone) 3.15 0.60

C18H12 (tetracene) 3.15 0.59

C14H10 (anthracene) 3.02 0.58

C42H28 (rubrene) 2.88 0.58 0.50

C10H8 (naphthalene) 2.70 0.58

C6H6 (benzene) 2.40 0.57 0.54

NH3 (ammonia) 2.00 0.57 0.53

C2H4O2 (acetic acid) 1.88 0.60

H2O (ice) 1.68 0.58 0.52

Material), unlike the case of inorganic materials.

In a previous study,94 it was observed that a fraction
of exchange in the range of 0.31-0.35 yielded electronic
gaps of organic semiconducting molecular crystals, such
as pentacene, in very good agreement with experiment
and GW calculations. Indeed, as mentioned above and
shown in Table S2, the computed inverse dielectric con-
stants of many of the semiconducting molecular crystals
are centered around ∼0.3. We also note that the good
performance of the PBE0-1/3 functional95 for molecular
crystals reported in the literature most likely stems from
the 1/3 fraction of exact-exchange used being similar in
value to the inverse dielectric constant of the molecular
crystals.

Similar to what was done for two exemplary inorganic
systems, we varied the sr fraction of Hartree-Fock ex-
change (β) together with the screening parameter (µ) for
a molecular crystal (ice), to assess how the electronic gap
depends on the coupling of these two quantities. Fig. 6
shows the 2D heat map of the signed electronic gap error
for ice as a function of β and µ. A concave curvature of
the minimum error (white region) similar to that of the
inorganic insulator MgO with ε∞ < 4 was observed for
ice.

We also evaluated the vertical ionization potential
(vIP) of a subset of molecular crystals, namely rubrene,
ice, and benzene, which are tabulated in Table VI. Slab
calculations were used (see Method Section) in order to
place the valence band obtained from plane-wave pseu-
dopotential calculations on an absolute energy scale (see
Table S7 of the Supplemental Material for the electro-
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TABLE IV: The xx, yy, and zz componenets of the dielectric tensor (ε∞) of the systems listed on the first row,
computed at the PBE, PBE0, and sc-hybrid levels of theory and the corresponding experimental results.

Anthracene PTCDA DBTTF-TCNQ

εxx εyy εzz εxx εyy εzz εxx εyy εzz

PBE 2.28 2.93 4.30 2.25 4.40 4.50 42.38 3.67 2.90

PBE0 2.22 2.83 4.10 2.12 4.10 4.12 11.08 5.82 2.72

sc-hybrid 2.21 2.80 4.02 2.11 4.06 4.08 26.28 3.54 2.81

Exp.87,88 2.42 ±0.05 2.90 ±0.05 4.07 ±0.05 2.40 5.29 5.02

Exp.89,90 2.62 ±0.03 2.94 ±0.03 4.08 ±0.03 1.90 4.49

Exp.91,92 2.51 2.99 4.11 2.28 3.73

TABLE V: The Kohn-Sham (KS) energy gaps (eV) evaluated with the dielectric-dependent hybrid functionals, PBE
and PBE0 are compared with the experimental electronic gaps for several molecular crystals. The experimental

values are from photoemission measurements.

PBE PBE0 Hybrid Hybrid sc-hybrid RSH Exp.

α = 0 α = 0.25 α = 1/εPBE
∞ α = 1/εPBE0

∞ α = 1/εsc∞ µTF

DBTTF-TCNQ 0.16 0.74 0.26 0.45 0.31 0.33

C60 1.27 2.34 2.11 2.27 2.26 2.26 2.3 ± 0.196

phthalocyanine (H2Pc) 1.22 1.85 1.84 1.85 1.85 1.85 2.2 ± 0.297

PTCDA 1.41 2.53 2.62 2.72 2.73 2.73 2.74 ± 0.297

pentacene 0.76 1.83 1.95 2.04 2.05 2.05 2.198,99

quinacridone 1.43 2.76 3.02 3.13 3.13 3.11

tetracene 1.26 2.46 2.72 2.78 2.80 2.79 3.398,99

anthracene 2.05 3.45 3.82 3.89 3.91 3.89 3.72100

rubrene 1.15 2.32 2.70 2.77 2.79 2.77 2.67101

naphthalene 3.05 4.64 5.32 5.39 5.41 5.37 5.2998,99

benzene 4.57 6.37 7.48 7.56 7.58 7.47 7.5898,99

ammonia 4.52 6.82 8.76 9.00 9.17 8.92

acetic acid 5.18 7.96 10.76 10.95 11.12 10.62

H2O (icea) 5.42 7.92 10.96 11.23 11.49 10.94 10.983

ME (eV) -2.05 -0.69 -0.12 -0.02 0.02 -0.06 –

MAE (eV) 2.05 0.70 0.19 0.18 0.21 0.16 –

MRE (%) -49.6 -13.5 -4.9 -2.3 -1.7 -2.6 –

MARE (%) 49.6 13.8 6.1 5.1 5.4 4.9 –

a See the Supplemental Material for details on the cell of ice used. The experiemtnal photoemmision gap shown is for proton-disordered
ice Ih @ 80K.

static potential alignments compted at each level of the-
ory). The results for PBE and PBE0 functionals did not
provide very good agreement with experiment, whereas
the sc-hybrid and RSH functional results appear to be in
excellent agreement with experiment. However, we note
that the experimental results in Table VI may not cor-
respond to the cleaved surface used in our calculation,
though the rubrene surface explored here is a typically
exposed surface of that molecular crystal when deposited
on an oxide surface (e.g. indium tin oxide or silica).102 In
the case of ice, it appears that the sc-hybrid functional
yields the best vertical ionization potential, but as shown
by the gaps of Table V, not necessarily the best gap.

Finally we analyzed the photoelectron spectra of sev-

eral molecular crystals, including ice, rubrene, and pen-
tacene. We found that the position of the highest ex-
citation with respect to vaccum is accurately described
by both RS DDH and DDH functionals. The comparion
of the full spectra with the corresponding experimental
results will be given elsewhere.

C. Finite Systems: Molecules and Nanoparticles

Here we investigate the applicability of the RSH func-
tional form to finite systems, including molecules and
nanoparticles. For finite systems ε∞ → 1 and hence we
discuss only the range-separated DDH. The generaliza-
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FIG. 6: (Color online) Signed electronic gap error of ice
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µerfc-fit fall, respectively.

tion of a full-range DDH functional to finite systems is
presented in Ref. 107. In the case of molecules, we con-
sidered an additional screeneing parameter defined as:

µαM =

(
1

αM

) 1
3

(13)

where αM is the molecular polarizability. We show below

TABLE VI: The vertical ionization potential (vIPs), in
units of eV, of several solid molecular crystals evaluated
with PBE, PBE0, sc-hybrid and RSH functionals. The

experimental values are listed for comparison. Note
that for rubrene the surface listed corresponds to the

orthorhombic cell. The screeneing parameters µTF and
µαM

are defined in Eq. (9) and Eq. (13), respectively.

surface PBE PBE0 schybrid RSH Exp.

µTF

rubrene (100) 3.85 4.45 4.69 4.68 4.85104

benzene (001) 6.08 7.02 7.63 7.61 7.5898

icea (1010) 7.2 8.7 11.2 10.7 11.8105,106

a The prisim surface of ice used. See Ref. 103 for further details
on the common surfaces of ice.

TABLE VII: Screening parameters for isolated
molecules. The second and third columns list the

screening parameters obtained from the fit of the RPA
dielectric function of the isolated molecules and

obtained from the molecular polarizability radius (see
Eq. (13)). We also give in column four the screening
parameters obtained from the OT-RSH functional

defined in Ref. 38.

µerfc-fit µαM µOT-RSH

C60 (buckminsterfullerene) 0.64 0.12 0.14

C24H8O6 (α PTCDA) 0.62 0.14 0.14

C22H14 (pentacene) 0.56 0.14 0.15

C20H12O2 (β quinacridone) 0.59 0.15 0.15

C18H12 (tetracene) 0.58 0.16 0.16

C14H10 (anthracene) 0.59 0.18 0.18

C42H28 (rubrene) 0.61 0.12 0.11

C10H8 (naphthalene) 0.61 0.21 0.21

C6H6 (benzene) 0.63 0.24 0.21

NH3 (ammonia) 0.63 0.40 0.33

C2H4O2 (acetic acid) 0.69 0.31 0.27

H2O (water) 0.67 0.46 0.38

that a RSH form with µ = µαM (Eq. (13)) yields results in
good agreement with experiments; however if one chooses
µPDEP (which yields accurate results for both inorganic
and organic solids), the agreement with experiments for
isolated molecules is worsened.

Table VII compares the screening parameters µαM
to

µerfc-fit for molecules; we also compare to those obtained
from the optimally tuned range-separated hybrid (OT-
RSH)38 procedure, where lr and sr fractions of exchange
used in the OT-RSH to the same limits used in the
present RS-DDH functional (i.e. lr = 1 and sr = 0.25).
Interestingly, µαM

and µ
OT-RSH

are very similar for several
molecular systems and are loosely dependent on molecu-
lar size, whereas µerfc-fit is generally larger in value and
nearly constant. Note that the advantage of using µαM
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TABLE VIII: The vertical ionization potentials (vIP) of
the gas phase molecules that compose the molecular

crystals are evaluated using the RS-DDH with
µ = µerfc-fit, column 2, and µ = µαM

, column 3, and
with the OT-RSH functional defined in Ref. 38, column
4. The experimental values are listed for comparison in
the last column. Unless otherwise noted they are taken

from the NIST Webbook.109

vIPg (eV)

RSH RSH RSH Exp.

µerfc-fit µαM µOT-RSH

C60 8.74 7.40 7.76 7.60

PTCDA 9.23 8.20 8.20 8.20

pentacene 7.08 6.29 6.29 6.61

quinacridone 8.44 7.35 7.35 7.23

tetracene 7.51 6.72 6.72 6.97

anthracene 8.14 7.30 7.30 7.44

rubrene 7.28 6.28 6.16 6.52

napthalene 8.87 8.07 8.07 8.14

benzene 10.15 9.37 9.24 9.25

ammonia 11.85 11.07 10.7 10.8

acetic acid 12.61 11.08 10.78 10.9

H2O 13.78 13.01 12.55 12.62

ME (eV) 0.95 -0.01 -0.10 –

MAE (eV) 0.95 0.19 0.14 –

MRE (%) 11.1 -0.6 -1.3 –

MARE (%) 11.1 2.3 1.9 –

over the optimization scheme of the OT-RSH functional
lies in its ease of evaluation108.

Table VIII lists the evaluated vertical ionization poten-
tials using the RS-DDH functional with µ = µerfc-fit and
the molecular polarizability screening parameter (µαM

)
for the gas phase molecules that compose the solid molec-
ular crystals investigated in Section II B. The vertical
ionization potentials using µαM

are in excellent agree-
ment with experiment yielding a 2.3% MARE, whereas
the electron affinities shown in Fig. S9 of the SM are de-
scribed well for bound excited states ( MARE of 9.9%).
Using the screening parameter obtained from the comple-
mentary error function fit of the diagonal components of
the dielectric matrix (µerfc-fit) in the RS-DDH functional
form to evalutate the vIP does not yield the same level
of accuracy (MARE of 11.1%). Also shown in Table VIII
are the vertical ionization potentials evaluated using the
OT-RSH functional defined in Ref. 38, which are of the
same level of accuracy as the RS-DDH with µ = µαM .
The small difference seen in the MAEs for RS-DDH(µαM)
and OT-RSH is not statistically significant for the small
set of molecules investigated (p-value of 0.18), indicating
the two methods yield the same result.

We also computed the photoelectron spectra of sev-
eral isolated molecules including benzene and pentacene,
which are reported for various levels of theory in Fig. 7,

 PBE0

PBE0-85

  RSH-αM

-10 -8 -6 -4 -2
Binding Energy (eV)

exp.

 PBE0

PBE0-81

  RSH-αM

-18 -16 -14 -12 -10 -8
Binding Energy (eV)

exp.

FIG. 7: (Color online) The photoelectron spectrum of
isolated benzene (top panel) and pentacene (bottom

panel) molecules at several levels of theory; PBE0 (red),
PBEα∗110 labeled as PBE0-81, and PBE0-85, in the top

and bottom panels respectively (orange), RSH-αM
(magenta), and experiment (black). The computed

spectra are broadened by a Gaussian of width 0.38 eV
and 0.28 eV for benzene and pentacene, respectively.
The black arrow indicates the experimental electron

affinity for pentacene.

and compared to experiments. In the present work our
focus is placed on the accurate determination of the spec-
tra peak positions on an absolute scale rather than recov-
ering the experimental peak intensities, and thus we did
not formally compute intensities. The computed spec-
tra shown are the density of states obtained by sum-
ming normalized gaussians centered at each KS energy
state. For both molecules, the PBE0 spectra yield the
poorest agreement with experiment. The highest occu-
pied molecular orbital is best reproduced by the global
hybrids PBE0-81 and PBE0-85, that minimize the dif-
ference between the KS eigenvalues and the GW quasi-
particle corrections110:

α∗ = arg minα|〈ψH(α)|Σ(α)− vxc(α)|ψH(α)〉 (14)

However these functionals yield a poor description of
the rest of the spectra. A similar observation was pre-
viously pointed out by Körzdörfer et al.39 in a study of
tuned full-range hybrid functionals applied to molecules.
Unlike full-range hybrid functionals, RSH introduces an
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effective spatially dependent screening that treats differ-
ently each KS state according to their spatial extent.
This offers additional flexibility and thus yields further
improvement in the spectral features over the full-range
hybrid functionals.

IV. SUMMARY AND CONCLUSIONS

In summary, we defined a range separated (RS) form
of dielectric-dependent hybrid (DDH) functionals using
material dependent, non empirical parameters and we
showed that its performance is superior to that of non
range-separated DDH functionals for the description of
the electronic gap of a set of diverse inorganic semicon-
ductors and insulators. The same functional form also
yields results in excellent agreement with experiments for
the electronic gaps and vertical ionization potentials of
molecular crystals, with a performance similar to that of
full-range DDHs. Finally we presented a generalization
of RS-DDHs to molecules and we discussed which pa-
rameters are appropriate to bridge long and short range
components of the generalized Kohn-Sham potential in
the case of finite systems. The best agreement with ex-
periments was obtained using a parameter related to the
inverse of the cube root of the molecular polarizability,
while the parameters used for extended systems (defined,
e.g. using a Thomas-Fermi model fit to the diagonal com-
ponents of the dielectric matrix) yielded less accurate re-
sults. We note in closing that the results presented here
do not include the contribution from phonons coupling to

the electronic states, which may be significant for light
element solids68–70,111. Further analysis of the gap renor-
malization due to the electron-phonon coupling will be
reported elsewhere.
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