Dielectric-dependent hybrid (DDH) functionals were recently shown to yield
accurate energy gaps and dielectric constants for a wide variety of solids, at
a computational cost considerably less than that of GW calculations. The
fraction of exact exchange included in the definition of DDH functionals
depends (self-consistently) on the dielectric constant of the material. Here we
introduce a range-separated (RS) version of DDH functionals where short and
long-range components are matched using system dependent, non-empirical
parameters. We show that RS DDHs yield accurate electronic properties of
inorganic and organic solids, including energy gaps and absolute ionization
potentials. Furthermore we show that these functionals may be generalized to
finite systems.Comment: In press. 13 pages, 7 figures, 8 tables, Physical Review B 201