730 research outputs found

    The measurement postulates of quantum mechanics are operationally redundant

    Get PDF
    Understanding the core content of quantum mechanics requires us to disentangle the hidden logical relationships between the postulates of this theory. Here we show that the mathematical structure of quantum measurements, the formula for assigning outcome probabilities (Born's rule) and the post-measurement state-update rule, can be deduced from the other quantum postulates, often referred to as "unitary quantum mechanics", and the assumption that ensembles on finite-dimensional Hilbert spaces are characterised by finitely many parameters. This is achieved by taking an operational approach to physical theories, and using the fact that the manner in which a physical system is partitioned into subsystems is a subjective choice of the observer, and hence should not affect the predictions of the theory. In contrast to other approaches, our result does not assume that measurements are related to operators or bases, it does not rely on the universality of quantum mechanics, and it is independent of the interpretation of probability.Comment: This is a post-peer-review, pre-copyedit version of an article published in Nature Communications. The final authenticated version is available online at: http://dx.doi.org/10.1038/s41467-019-09348-

    Antioxidants that protect mitochondria reduce interleukin-6 and oxidative stress, improve mitochondrial function, and reduce biochemical markers of organ dysfunction in a rat model of acute sepsis

    Get PDF
    Funding This study was funded by the Medical Research Council (Grant number G0800149). Research material from this study is not available. Acknowledgement We are very grateful to Dr Robin A.J. Smith, Department of Chemistry, University of Otago, Dunedin, New Zealand, for the generous gifts of MitoE and MitoQ, without which this work would not have been possible.Peer reviewedPublisher PD

    Any modification of the Born rule leads to a violation of the purification and local tomography principles

    Get PDF
    Using the existing classification of all alternatives to the measurement postulates of quantum theory we study the properties of bi-partite systems in these alternative theories. We prove that in all these theories the purification principle is violated, meaning that some mixed states are not the reduction of a pure state in a larger system. This allows us to derive the measurement postulates of quantum theory from the structure of pure states and reversible dynamics, and the requirement that the purification principle holds. The violation of the purification principle implies that there is some irreducible classicality in these theories, which appears like an important clue for the problem of deriving the Born rule within the many-worlds interpretation. We also prove that in all such modifications the task of state tomography with local measurements is impossible, and present a simple toy theory displaying all these exotic non-quantum phenomena. This toy model shows that, contrarily to previous claims, it is possible to modify the Born rule without violating the no-signalling principle. Finally, we argue that the quantum measurement postulates are the most non-classical amongst all alternatives.Comment: 31 pages, 12 Figure

    Effective-one-body waveforms for binary neutron stars using surrogate models

    Get PDF
    Gravitational-wave observations of binary neutron star systems can provide information about the masses, spins, and structure of neutron stars. However, this requires accurate and computationally efficient waveform models that take <1s to evaluate for use in Bayesian parameter estimation codes that perform 10^7 - 10^8 waveform evaluations. We present a surrogate model of a nonspinning effective-one-body waveform model with l = 2, 3, and 4 tidal multipole moments that reproduces waveforms of binary neutron star numerical simulations up to merger. The surrogate is built from compact sets of effective-one-body waveform amplitude and phase data that each form a reduced basis. We find that 12 amplitude and 7 phase basis elements are sufficient to reconstruct any binary neutron star waveform with a starting frequency of 10Hz. The surrogate has maximum errors of 3.8% in amplitude (0.04% excluding the last 100M before merger) and 0.043 radians in phase. The version implemented in the LIGO Algorithm Library takes ~0.07s to evaluate for a starting frequency of 30Hz and ~0.8s for a starting frequency of 10Hz, resulting in a speed-up factor of ~10^3 - 10^4 relative to the original Matlab code. This allows parameter estimation codes to run in days to weeks rather than years, and we demonstrate this with a Nested Sampling run that recovers the masses and tidal parameters of a simulated binary neutron star system.Comment: 17 pages, 11 figures, submitted to PR

    Pharmacological activation of endogenous protective pathways against oxidative stress under conditions of sepsis

    Get PDF
    Funding The study was funded entirely by institutional funds.Peer reviewedPostprin

    Response to "The measurement postulates of quantum mechanics are not redundant"

    Full text link
    Adrian Kent has recently presented a critique [arXiv:2307.06191] of our paper [Nat. Comms. 10, 1361 (2019)] in which he claims to refute our main result: the measurement postulates of quantum mechanics can be derived from the rest of postulates, once we assume that the set of mixed states of a finite-dimensional Hilbert space is finite-dimensional. To construct his argument, Kent considers theories resulting from supplementing quantum mechanics with hypothetical "post-quantum" measurement devices. We prove that each of these theories contains pure states (i.e. states of maximal knowledge) which are not rays of the Hilbert space, in contradiction with the "pure state postulate" of quantum mechanics. We also prove that these alternatives violate the finite-dimensionality of mixed states. Each of these two facts separately invalidates the refutation. In this note we also clarify the assumptions used in the above-cited paper and discuss the notions of pure state, physical system, and the sensitivity of the structure of the state space under modifications of the measurements or the dynamics.Comment: 7 page

    A no-go theorem on the nature of the gravitational field beyond quantum theory

    Full text link
    Recently, table-top experiments involving massive quantum systems have been proposed to test the interface of quantum theory and gravity. In particular, the crucial point of the debate is whether it is possible to conclude anything on the quantum nature of the gravitational field, provided that two quantum systems become entangled due to solely the gravitational interaction. Typically, this question has been addressed by assuming an underlying physical theory to describe the gravitational interaction, but no systematic approach to characterise the set of possible gravitational theories which are compatible with the observation of entanglement has been proposed. Here, we introduce the framework of Generalised Probabilistic Theories (GPTs) to the study of the nature of the gravitational field. This framework has the advantage that it only relies on the set of operationally accessible states, transformations, and measurements, without presupposing an underlying theory. Hence, it provides a framework to systematically study all theories compatible with the detection of entanglement generated via the gravitational interaction between two non-classical systems. Assuming that such entanglement is observed we prove a no-go theorem stating that the following statements are incompatible: i) the two non-classical systems are independent subsystems, ii) the gravitational field is a physical degree of freedom which mediates the interaction and iii) the gravitational field is classical. Moreover we argue that conditions i) and ii) should be met, and hence that the gravitational field is non-classical. Non-classicality does not imply that the gravitational field is quantum, and to illustrate this we provide examples of non-classical and non-quantum theories which are logically consistent with the other conditions.Comment: 12 pages main text; 23 pages Appendices; many diagrams. Improved presentation compared to the first versio

    Any consistent coupling between classical gravity and quantum matter is fundamentally irreversible

    Full text link
    When gravity is sourced by a quantum system, there is tension between its role as the mediator of a fundamental interaction, which is expected to acquire nonclassical features, and its role in determining the properties of spacetime, which is inherently classical. Fundamentally, this tension should result in breaking one of the fundamental principles of quantum theory or general relativity, but it is usually hard to assess which one without resorting to a specific model. Here, we answer this question in a theory-independent way using General Probabilistic Theories (GPTs). We consider the interactions of the gravitational field with a single matter system, and derive a no-go theorem showing that when gravity is classical at least one of the following assumptions needs to be violated: (i) Matter degrees of freedom are described by fully non-classical degrees of freedom; (ii) Interactions between matter degrees of freedom and the gravitational field are reversible; (iii) Matter degrees of freedom back-react on the gravitational field. We argue that this implies that theories of classical gravity and quantum matter must be fundamentally irreversible, as is the case in the recent model of Oppenheim et al. Conversely if we require that the interaction between quantum matter and the gravitational field are reversible, then the gravitational field must be non-classical.Comment: 5 pages main text; 8 pages Appendices (many diagrams
    corecore