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Using the existing classification of all al-
ternatives to the measurement postulates of
quantum theory we study the properties of
bi-partite systems in these alternative the-
ories. We prove that in all these theories
the purification principle is violated, mean-
ing that some mixed states are not the reduc-
tion of a pure state in a larger system. This
allows us to derive the measurement postu-
lates of quantum theory from the structure of
pure states and reversible dynamics, and the
requirement that the purification principle
holds. The violation of the purification prin-
ciple implies that there is some irreducible
classicality in these theories, which appears
like an important clue for the problem of de-
riving the Born rule within the many-worlds
interpretation. We also prove that in all such
modifications the task of state tomography
with local measurements is impossible, and
present a simple toy theory displaying all
these exotic non-quantum phenomena. This
toy model shows that, contrarily to previous
claims, it is possible to modify the Born rule
without violating the no-signalling principle.
Finally, we argue that the quantum measure-
ment postulates are the most non-classical
amongst all alternatives.

1 Introduction
The postulates of quantum theory describe the evo-
lution of physical systems by distinguishing between
the cases where observation happens or not. How-
ever, these postulates do not specify what consti-
tutes observation, and it seems that an act of obser-
vation by one agent can be described as unperturbed
dynamics by another [1]. This opens the possibility
of deriving the physics of observation within the pic-
ture of an agent-free universe that evolves unitarily.
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This problem has been studied within the dynam-
ical description of quantum measurements [2], the
decoherence program [3] and the Many-Worlds In-
terpretation of quantum theory [4, 5].

In this work, instead of presenting another deriva-
tion of the measurement postulates, we take a more
neutral approach and analyze all consistent alter-
natives to the measurement postulates. In particu-
lar, we prove that in each such alternative there are
mixed states which are not the reduction of a pure
state on a larger system. This property singles out
the (standard) quantum measurement postulates in-
cluding the Born Rule.

In our previous work [6] we constructed a com-
plete classification of all alternative measurement
postulates, by establishing a correspondence be-
tween these and certain representations of the uni-
tary group. However, this classification did not in-
volve the consistency constraints that arise from the
compositional structure of the theory; which governs
how systems combine to form multi-partite systems.
In this work we take into account compositional
structure, and prove that all alternative measure-
ment postulates violate two compositional princi-
ples: purification [7, 8] and local tomography [9, 10].
We also present a simple alternative measurement
postulate (a toy theory) which illustrates these ex-
otic phenomena. Additionally, this toy theory pro-
vides an interesting response to the claims that the
Born rule is the only probability assignment consis-
tent with no-signalling [11–13].

In Section 2 we introduce a theory-independent
formalism, which allows to study all alternatives to
the measurement postulates. We also review the
results of our previous work [6]. In Section 3 we
define the purification and local tomography princi-
ples, and show that these are violated by all alter-
native measurement postulates. In Section 4 we de-
scribe a particular and very simple alternative mea-
surement postulate, which illustrates our general re-
sults. In Section 5 we discuss our results in the light
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of existing work. All proofs are in the appendices.

2 Dynamically-quantum theories
In this work we consider all theories that have the
same pure states, dynamics and system-composition
rule as quantum theory, but have a different struc-
ture of measurements and a different rule for assign-
ing probabilities.

2.1 States, transformations and composition pos-
tulates
The family of theories under consideration satisfy
the following postulates, taken from the standard
formulation of quantum theory.

Postulate (Quantum States). Every finite-
dimensional Hilbert space Cd corresponds to a type
of system with pure states being the rays ψ of Cd.

Postulate (Quantum Transformations). The re-
versible transformations on the pure states Cd are
ψ 7→ Uψ for all U ∈ SU(d).

Postulate (Quantum Composition). The joint pure
states of systems CdA and CdB are the rays of CdA ⊗
CdB ' CdAdB .

2.2 Measurement postulates
Before presenting the generalized measurement pos-
tulate we need to introduce the notion of outcome
probability function, or OPF. For each measurement
outcome x of system Cd there is a function F (x)

that assigns to each ray ψ in Cd the probability
F (x)(ψ) ∈ [0, 1] for the occurrence of outcome x.
Any such function F is called an OPF. Each system
has a (trivial) measurement with only one outcome,
which must have probability one for all states. The
uniqueness of this trivial measurement is the Causal-
ity Axiom of [7]. The OPF associated to this out-
come is called the unit OPF u, satisfying u(ψ) = 1
for all ψ. A k-outcome measurement is a list of k
OPFs (F (1), . . . , F (k)) satisfying the normalization
condition

∑
i F

(i) = u. It is not necessarily the case
that every list of OPFs satisfying this condition de-
fines a measurement, though this assumption can be
made. As an example, the OPFs of quantum theory
are the functions

F (ψ) = tr(F̂ |ψ〉〈ψ|) , (1)

for all Hermitian matrices F̂ satisfying 0 ≤ F̂ ≤ I.
This implies that û = I. (Here and in the rest of
the paper we assume that kets |ψ〉 are normalized.)

Postulate (Alternative Measurements). Every
type of system Cd has a set of OPFs Fd with a bi-
linear associative product ? : FdA × FdB → FdAdB
satisfying the following consistency constraints:

C1. For every F ∈ Fd and U ∈ SU(d) there is
an F ′ ∈ Fd such that F ′(ψ) = F (Uψ) for all
ψ ∈ Cd. That is, the composition of a unitary
and a measurement can be globally considered
a measurement.

C2. For any pair of different rays ψ 6= φ in Cd there
is an F ∈ Fd such that F (ψ) 6= F (φ). That
is, different pure states must be operationally
distinguishable.

C3. The ?-product satisfies uA ? uB = uAB and

(FA ? FB)(ψA ⊗ φB) = FA(ψA)FB(φB) , (2)

for all FA ∈ FdA , FB ∈ FdB , ψA ∈ CdA , φB ∈
CdB . That is, tensor-product states ψA ⊗ φB
contain no correlations.

C4. For each φAB ∈ CdA ⊗ CdB and FB ∈ FdB there
is an ensemble {(ψiA, pi)}i in CdA such that

(FA ? FB)(φAB)
(uA ? FB)(φAB) =

∑
i

piFA(ψiA) , (3)

for all FA ∈ FdA . That is, the reduced state
on A conditioned on outcome FB on B (and re-
normalized) is a valid mixed state of A. In the
next sub-section we fully articulate the notions
of ensemble and mixed state.

C5. Consider measurements on system CdA with the
help of an ancilla CdB . For any ancillary state
φB ∈ CdB and any OPF in the composite FAB ∈
FdAdB there exists an OPF on the system F ′A ∈
FdA such that

F ′A(ψA) = FAB(ψA ⊗ φB) (4)

for all ψA.

The derivation of these consistency constraints from
operational principles is provided in Appendix A.
Continuing with the example of quantum theory (1),
the ?-product in this case is

(FA ? FB)(ψAB) = tr(F̂A ⊗ F̂B|ψAB〉〈ψAB|) . (5)

A trivial modification of the Measurement Postulate
consists of taking that of quantum mechanics (1)
and restricting the set of OPFs in some way, such
that not all POVM elements F̂ are allowed. In this
work, when we refer to “all alternative measurement
postulates” we do not include these trivial modifi-
cations.
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2.3 Mixed states and the Finiteness Principle
A source of systems that prepares state ψi ∈
Cd with probability pi is said to prepare the en-
semble {(ψi, pi)}i. Two ensembles {(ψi, pi)}i and
{(φj , qj)}j are equivalent if they are indistinguish-
able ∑

i

piF (ψi) =
∑
j

qjF (φj) (6)

for all measurements F ∈ Fd. Note that distin-
guishability is relative to the postulated set of OPFs
Fd. A mixed state ω is an equivalence class of indis-
tinguishable ensembles, and hence, the structure of
mixed states is also relative to Fd. To evaluate an
OPF F on a mixed state ω we can take any ensemble
{(ψi, pi)}i of the equivalence class ω and compute

F (ω) =
∑
i

piF (ψi) . (7)

In general, ensembles can have infinitely-many
terms, hence, the number of parameters that are
needed to characterize a mixed state can be infinite
too. When this is the case, state estimation without
additional assumptions is impossible, and for this
reason we make the following assumption.

Principle (Finiteness). Each mixed state of a
finite-dimensional system (Cd,Fd) can be character-
ized by a finite number Kd of parameters.

Recall that in quantum theory we have Kd = d2 −
1. And in general, the distinguishability of all rays
in Cd implies Kd ≥ 2d − 2. These Kd parameters
can be chosen to be a fix set of “fiducial” OPFs
F1, . . . , FKd

∈ Fd, which can be used to represent
any mixed state ω as

ω̄ =


F1(ω)
F2(ω)

...
FKd

(ω)

 . (8)

The fact that OPFs are probabilities implies that
any OPF F ∈ Fd is a linear function of the fiducial
OPFs

F =
∑
i

ciFi . (9)

In other words, the fiducial OPFs F1, . . . , FKd
∈ Fd

constitute a basis of the real vector space spanned by
Fd. Using the consistency constraint C1, we define
the SU(d) action

Fi =
∑
i′

Γ̄i,i′(U)Fi′ (10)

on the vector space spanned by Fd. This asso-
ciates to system (Cd,Fd) a Kd-dimensional repre-
sentation of the group SU(d). This, together with
the other consistency constraints, implies that only
certain values of Kd are allowed. For example
K2 = 3, 7, 8, 10, 11, 12, 14 . . .

2.4 Measurement postulates for single systems
In this subsection we review some of the results ob-
tained in [6]. These provide the complete classifica-
tion of all sets Fd satisfying the Finiteness Principle
and the consistency constraints C1 and C2. These
results ignore the existence of the ?-product, C3, C4
and C5. Hence, in alternative measurement postu-
lates with a consistent compositional structure there
will be additional restrictions on the valid sets Fd.
This is studied in Section 3.

Theorem (Characterization). If Fd satisfies the
Finiteness Principle and C1 then there is a posi-
tive integer n and a map F 7→ F̂ from Fd to the set
of dn × dn Hermitian matrices such that

F (ψ) = tr
(
F̂ |ψ〉〈ψ|⊗n

)
(11)

for all normalized vectors ψ ∈ Cd.
Note that there are many different sets Fd with the
same n. In particular, since the SU(d) action

|ψ〉〈ψ|⊗n 7→ U⊗n|ψ〉〈ψ|⊗nU⊗n† (12)

is reducible, the Hermitian matrices F̂ can have sup-
port on the different irreducible sub-representations
of (12), generating sets Fd with very different phys-
ical properties. All these possibilities are analyzed
in [6].

Theorem (Faithfulness). If Fd satisfies the Finite-
ness Principle, C1 and C2, then
case d ≥ 3 there is a non-constant F ∈ Fd.
case d = 2 there is F ∈ F2 such that F̂ has support

on a sub-representation of the SU(2) action (12)
with odd angular momentum.

3 Features of all alternative measure-
ment postulates
In this section we analyze the compositional struc-
ture of alternative measurement postulates. We do
so by considering two well known physical principles
which, together with other assumptions, have been
used to reconstruct the full formalism of quantum
theory [8, 14–16]. Remarkably, these principles are
violated by all alternative measurement postulates.
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3.1 The Purification Principle

This principle establishes that any mixed state is
the reduction of a pure state in a larger system.
This legitimises the “Church of the Larger Hilbert
Space”, an approach to physics that always assumes
a global pure state when an environment is added
to the systems under consideration [17].

Principle (Purification). For each ensemble
{(ψi, pi)}i in CdA there exists a pure state φAB in
CdA ⊗ CdB for some dB satisfying

(FA ? uB)(φAB) =
∑
i

piFA(ψi) , (13)

for all FA ∈ FdA .

Note that the original version of the purification
principle introduced in [7] additionally demands
that the purification state φAB is unique up to a
unitary transformation on CdB . Also note that the
following theorem does not require the Finiteness
Principle.

Theorem (No Purification). All alternative mea-
surements postulates Fd satisfying C1, C2, C3 and
C4 violate the purification principle.

This implies that in all alternative measurement
postulates there are operational processes, such as
mixing two states, which cannot be understood as
a reversible transformation on a larger system. In
such alternative theories, agents that perform physi-
cal operations cannot be integrated in an agent-free
universe, as can be done in quantum theory, and
the Church of the Larger Hilbert Space is illegiti-
mate. The assumption that agents’ actions can be
understood as reversible transformations on a larger
system is also the starting point of the many-worlds
interpretation of quantum theory. Hence, it seems
like the no-purification theorem provides important
clues for the derivation of the Born Rule within the
many-worlds interpretation [1, 3–5]. In section 5.1
we discuss further the possibility of using this result
to derive the quantum measurement postulates, and
contrast it to Zurek’s envariance based derivation of
the Born rule.

3.2 The Local Tomography Principle

This principle has been widely used in reconstruc-
tions of quantum theory and the formulation of al-
ternative toy theories [8, 14–16, 18, 19]. One of the
reasons is that it endows the set of mixed states

with a tensor-product structure [10]. This princi-
ple states that any bi-partite state is characterized
by the correlations between local measurements.
That is, two different mixed states ωAB 6= ω′AB on
CdA ⊗CdB must provide different outcome probabil-
ities

(FA ? FB)(ωAB) 6= (FA ? FB)(ω′AB) (14)
for some local measurements FA ∈ FdA , FB ∈ FdB .
Using the notation introduced in (9) we can formu-
late this principle as follows.

Principle (Local Tomography). If {Fa}a is a basis
of FdA and {Fb}b is a basis of FdB then {Fa ? Fb}a,b
is a basis of FdAdB , where a = 1, . . . ,KdA and b =
1, . . . ,KdB .

A theory is said to violate local tomography if at
least one composite system within the theory vio-
lates local tomography. Therefore, it is sufficient to
analyze the particular bi-partite system C3 ⊗ C3 =
C9.

Theorem (No Local Tomography). All alternative
measurements F3 and F9 satisfying C1, C2, C3 and
the Finiteness Principle violate the local tomogra-
phy principle.

The above result is proven in Appendix E. We first
show that all transitive theories which obey the local
tomography principle have a group action acting on
the mixed states which has a certain structure. Any
group action of the form (10) which does not have
this structure must correspond to a system which vi-
olates local tomography. We show that all represen-
tations of SU(9) which correspond to systems with
alternative measurement postulates do not have this
structure. This entails that all non-quantum C9 sys-
tems which are composites of two C3 systems violate
local tomography.

The technical result proven to show this is the
following. All non-quantum irreducible representa-
tions of SU(9) which are sub-representations of the
action (12) have a sub-representation 13 ⊗ 13 when
restricted to the subgroup SU(3) × SU(3). Here 13

denotes the trivial representation of SU(3).

3.2.1 Comment on C2 ⊗ C2 systems

In quantum theory any Cd (d ≥ 2) system can be
simulated using some number of qubits. In this
sense qubits can be viewed as fundemental informa-
tion units [18]. Since C2 systems have a priveleged
status it is natural to ask whether C4 = C2⊗C2 sys-
tems in theories with modified measurement postu-
lates are locally tomographic. The proof technique
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used for the No Local Tomography Theorem applies
only to a certain family of these C4 systems. How-
ever all instances of C4 systems studied by the au-
thors which were not part of this family were found
to not be locally tomographic. We conjecture that
all C4 = C2⊗C2 violate the local tomography prin-
ciple.

4 A Toy Theory
In this section we present a simple alternative mea-
surement postulate (Fd, ?) which serves as exam-
ple for the results that we have proven in general
(violation of the purification and local tomography
Principles). In Appendix G it is proven that this al-
ternative measurement postulate satisfies all consis-
tency constraints (C1, C2, C3, C4, C5) except for
the associativity of the ?-product. This implies that
this toy theory is only fully consistent when dealing
with single and bi-partite systems. However, most
of the work in the field of general probabilistic the-
ories (GPTs) focuses on bi-partite systems, because
these already display very rich phenomenology. In
the following we consider two local subsystems of di-
mension dA and dB with sets of OPFs FL

dA
and FL

dB
.

The composite (global) system has a set of OPFs
FG
dAdB

.

Definition (Local effects FL
d ). Let S be the pro-

jector onto the symmetric subspace of Cd ⊗ Cd. To
each d2 × d2 Hermitian matrix F̂ satisfying

• 0 ≤ F̂ ≤ S,

• F̂ =
∑
i αi|φi〉〈φi|⊗2 for some |φi〉 ∈ Cd and

αi > 0,

• S− F̂ =
∑
i βi|ϕi〉〈ϕi|⊗2 for some |ϕi〉 ∈ Cd and

βi > 0,

there corresponds the OPF

F (ψ) = tr
(
F̂ |ψ〉〈ψ|⊗2

)
, (15)

The unit OPF corresponds to û = S.

That is, both matrices, F̂ and S−F̂ , have to be not-
necessarily-normalized mixtures of symmetric prod-
uct states.

Example (Canonical measurement for d prime).
For the case where d is prime there exists a canon-
ical measurement which can be constructed as fol-
lows. Consider the (d+ 1) mutually unbiased bases
(MUBs): {|φji 〉}di=1 where j runs from 1 to d+1 [20].

Then we can associate an OPF to each Hermitian
matrix 1

2 |φ
j
i 〉〈φ

j
i |⊗2. Since the basis elements of these

MUBs form a complex projective 2-design [21], by
the definition of 2-design [22], we have the normal-
ization constraint:

1
2
∑
i,j

|φji 〉〈φ
j
i |
⊗2 = S , (16)

and hence the set of OPFs forms a measurement.

Definition (? product). For any pair of OPFs FA ∈
FL
dA

and FB ∈ FL
dB

the Hermitian matrix correspond-
ing to their product FA ? FB ∈ FG

dAdB
is

F̂A ? FB = F̂A ⊗ F̂B + trF̂A
trSA

AA ⊗
trF̂B
trSB

AB , (17)

where SA and AA are the projectors onto the sym-
metric and anti-symmetric subspaces of CdA ⊗ CdA ,
and analogously for SB and AB.

This product is clearly bilinear and, by using the
identity SAB = SA ⊗ SB + AA ⊗ AB, we can check
that uA ? uA = uAB.

We observe that not all effects F̂A ? FB are of the
form

∑
i αi|φi〉〈φi|⊗2

AB. Hence the set of effects on the
joint system is not FL

dAdB
, but has to be extended to

FG
dAdB

to include these joint product effects.

Definition (Global effects FG
dAdB

). The set FG
dAdB

should include all product OPFs F̂A ? FB, all OPFs
FL
dAdB

of CdAdB understood as a single system, and
their convex combinations.

The identity SAB = SA ⊗ SB +AA ⊗AB perfectly
shows that the vector space FG

dAdB
is larger than the

tensor product of the vector spaces FL
dA

and FL
dB

, by
the extra term AA ⊗AB. This implies that this toy
theory violates the Local-Tomography Principle.

The joint probability of outcomes FA and FB on
the entangled state ψAB ∈ CdA ⊗CdB can be written
as

(FA ? FB)(ψAB)

=tr
[(
F̂A ⊗ F̂B + trF̂A

trSA
AA ⊗ trF̂B

trSB
AB
)
|ψAB〉〈ψAB|⊗2

]
.

When we only consider sub-system A outcome prob-
abilities are given by

(FA ? uB)(ψAB)

= tr
[(
F̂A ⊗ SB + trF̂A

trSA
AA ⊗AB

)
|ψAB〉〈ψAB|⊗2

]
(18)

= trA

[
F̂A ω̄A

]
, (19)
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Figure 1: Projection of C2 toy model state space. In this
projection the coloured points (blue and purple) are states
of the form

∑
i pi|ψi〉〈ψi|⊗2. The blue points are projections

of reduced states of a larger system obtained using formula
(20). The left hand corner corresponds to the state |0〉〈0|⊗2

and the right hand corner to the state |1〉〈1|⊗2. All pure
states are projected onto the curved boundary. This figure
shows that there are local mixed states (in purple) which
are not reduced states (in blue).

where the reduced state must necessarily be

ω̄A = trB
(
SB|ψAB〉〈ψAB|⊗2)+ SA

trSA
tr
(
AAAB|ψAB〉〈ψAB|⊗2)

(20)
All these reductions ω̄A of pure bipartite states ψAB
are contained in the convex hull of |φA〉〈φA|⊗2, as re-
quired by the consistency constraint C4. However,
not all mixtures of |φA〉〈φA|⊗2 can be written as one
such reduction (20). That is, the purification pos-
tulate is violated. This phenomenon is graphically
shown in Figure 1.

This toy model violates the no-restriction hypoth-
esis [7], in that not all mathematically allowed ef-
fects on the local state spaces are allowed effects. It
also violates the principle of pure sharpness [23] in
that all the effects are noisy.

5 Discussion

5.1 Interpreting results as a derivation of the Born
rule

In this paper we have shown that all modifications to
the quantum measurements lead to violations of the
purification and local tomography principles. This
entails that one can derive the measurement postu-
lates of quantum theory from the structure of pure
states and dynamics and either the assumption of
local tomography or purification. Such a derivation
uses the operational framework which can be viewed
as a background assumption.

A derivation of the Born rule which starts from
similar assumptions to ours, but not within an op-
erational setting, is the envariance based derivation
of Zurek [3]. Zurek begins by assuming the dynami-
cal structure of quantum theory and the assumption
that quantum theory is universal, which is to say

that all the phenomena we observe can be explained
in terms of quantum systems interacting. Specifi-
cally the classical worlds of devices can be modelled
quantum mechanically, including the measurement
process. We observe that this is philosophically very
different to the operational approach adopted in this
work, which takes the classical world as a primitive.
By assuming the dynamical structure of quantum
theory and the assumption of universality (as well as
some auxiliary assumptions) Zurek shows that mea-
surements are associated to orthonormal bases, and
that outcome probabilities are given by the Born
rule. For criticisms of Zurek’s approach we refer the
reader to [24–27].

We observe that the purification postulate seems
linked to the notion that quantum theory is univer-
sal, in the sense that any classical uncertainty can
be explained as originating from some pure global
quantum state. This shows an interesting link to
Zurek’s derivation, since although we work within an
operational framework, the concept of purification
is linked to the idea that quantum theory is univer-
sal. This shows that we can also rely on a concept
linked to universality in order to derive the Born
rule (and the structure of measurements) within an
operational approach.

We observe that we can also derive the measure-
ment postulates of quantum theory from the as-
sumption of local tomography, which does not have
this connotation of universality.

5.2 No-signalling
Multiple proofs have been put forward which claim
to show that violations of the Born rule lead to sig-
nalling [11–13]. However the authors only consider
modifications of the Born rule of a specific type. In
[11, 12] the authors only consider modifications of
the Born rule of the following form:

p(k|ψ) = |〈k|ψ〉|n∑
k′ |〈k′|ψ〉|n

, (21)

where |ψ〉 =
∑
k αk |k〉. Modifications of this form

are very restricted. By modifying all the measure-
ment postulates of quantum theory, we can cre-
ate toy models like the one introduced, which are
non-signalling (as we will show momentarily). This
shows that by modifying the Born rule in a more
general manner one can avoid issues of signalling.

In the case of the toy model it is immediate to
see that it is consistent with no-signalling. The con-
dition of no-signalling is equivalent to the existence
of a well defined state-space for the subsystem (i.e.
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independent of action on the other subsystem). We
see then that no-signalling is just a consequence of
there existing a well defined reduced state [7].

5.3 Purification as a constraint on physical theo-
ries

In Theorem 19 of [7] the authors show that any
two convex theories with the same states (pure and
mixed) which obey purification are the same the-
ory. In other words “states specify the theory” for
theories with purification [7]. In this chapter we
show that in the case of theories with pure states
PCd and dynamical group SU(d), any two theories
which obey purification with the same pure states
and reversible dynamics are the same. This means
that for a restricted family of theories (those with
systems with pure states PCd and dynamical group
SU(d)) we have the same result as Theorem 19 of [7]
but with different assumptions. It would be inter-
esting to establish whether this is a general feature
of theories with purification, namely that the pure
states and reversible dynamics specify the theory.

5.4 The quantum measurement postulates are
the most non-classical

One consequence of the classification in [6] is that
the quantum measurement postulates are the ones
which give the lowest dimensional state spaces. In
this sense the quantum measurement postulates are
the most non-classical, since they give rise to the
state spaces with the higest degree of indistinguish-
able ensemles [28]. We remember that in classical
probability theory all ensembles are distinguishable.

The violation of purification seems to indicate
some other, distinct type of classicality. In theories
which violate purification there are some prepara-
tions which can only be modelled as arising from a
classical mixture of pure states. There appears to be
some sort of irreducible classicality. However in the-
ories which obey purification we can always model
such preparations as arising from the reduction of a
global pure state. Since the quantum measurement
postulates are the only ones which give rise to sys-
tems which obey purification they can be viewed as
the most non-classical amongst all alternatives.

Hence we see that according to these two distinct
notions of non-classicality the quantum measure-
ment postulates are the most non-classical amonst
all possible measurement postulates.

5.5 Toy model
The toy model can be obtained by restricting the
states and measurements of two pairs of quantum
systems (CdA)⊗2 and (CdB)⊗2. In this sense we ob-
tain a theory which violates both local tomography
and purification. This method of constructing the-
ories is similar to real vector space quantum theory,
which can also be obtained from a suitable restric-
tion of quantum states and also violates local to-
mography. The main limitation of the toy model is
that it does not straightforwardly extend to more
than two systems. There is a natural generalisation
of the toy model to consider effects to be linear in
|ψ〉〈ψ|⊗n for n > 2, however showing the consistency
of the reduced state spaces and joint effects is more
complex.

5.6 Theories which decohere to quantum theory
A recent result [29] shows that all operational theo-
ries which decohere to quantum theory (in an anal-
ogous way to which quantum theory decoheres to
classical theory) must violate either purification or
causality (or both). The authors define a hyper-
decoherence map which maps states of the post-
quantum system to states of a quantum system (em-
bedded within the post-quantum system). This map
obeys the following properties:

1. Terminality: applying the map followed by the
unit effect is equivalent to just applying the unit
effect.

2. Idempotency: applying the map twice is the
same as applying it once.

3. The pure states of the quantum subsystem are
pure states of the post-quantum system. Simi-
larly the maximally mixed state of the quantum
subsystem is the maximally mixed state of the
post-quantum system.

Now we ask whether the systems in this paper
(which violate purification) can correspond to post-
quantum systems which decohere to quantum sys-
tems in some reasonable manner. We consider the
toy model with pure states |ψ〉〈ψ|⊗2 and no restric-
tion on the allowed effects (this toy model is only
valid for single systems). Now consider a linear map
from |ψ〉〈ψ|⊗2 to some embedded quantum system
such that the pure states of the system are also of
the form |φ〉〈φ|⊗2 (by property 3). This map must
be of the form U⊗2|ψ〉〈ψ|⊗2U †⊗2. Hence its action
on the state space conv

(
|φ〉〈φ|⊗2) gives an identical
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state space and the map is trivial.1 This shows that
the only hyper-decoherence maps which obey all the
conditions set out by Lee and Selby must be trivial.

As we argue later, it is not immediately obvious
that a hyper-decoherence map should obey condi-
tion 3. We now define a hyper-decoherence like map
which does not meet this condition. Consider the
following map where we label the copies of |ψ〉〈ψ|, 1
and 2:

D(|ψ〉〈ψ|⊗2) = Tr2(|ψ〉〈ψ|⊗2)⊗ |0〉〈0| (22)
= |ψ〉〈ψ| ⊗ |0〉〈0| . (23)

This meets properties 1 and 2, but not 3. Indeed
the states |ψ〉〈ψ|⊗|0〉〈0| are not valid mixed states of
the post-quantum system. The image of this map
|ψ〉〈ψ| ⊗ |0〉〈0| for all ψ ∈ PCd is a quantum state
space.

The authors of [29] show that requirement 3 can
be replaced by the requirement that the hyper-
decoherence map maps between systems with the
same information dimension. As shown in [6] (for
the case PC2) the information dimension of an un-
restricted |ψ〉〈ψ|⊗2 state space is larger than that of
a qubit.

The hyper-decoherence map of [29] is inspired by
the decoherence map which exists between quantum
and classical state spaces. The map introduced in
this section is very different from this, since its im-
age is not an embedded state space; however it may
be that decoherence between a post-quantum the-
ory and quantum theory is very different from what
our quantum/classical intuitions might lead us to
believe.

The decoherence map of equation (22) appears
strange at first, since it maps states of a post-
quantum system to a sub-system which is embed-
ded in such a way that its states are not valid states
of the post-quantum system. However the image of
this decoherence map is actually the state space one
would obtain if one had access to the post-quantum
system |ψ〉〈ψ|⊗2 but only a restricted set of mea-
surements. An observer with access to the post-
quantum system |ψ〉〈ψ|⊗2 but only effects of the
form F (ψ) = Tr((F̂ ⊗ I)|ψ〉〈ψ|⊗2) would reconstruct
a quantum state space. Hence the link between the
system and subsystem becomes clearer: the quan-
tum sub-system is obtained from the post-quantum
system by restricting the measurements on the post-
quantum system. We emphasise once more that the
toy model with unrestricted effects does not com-
pose.

1We thank referee 1 for this observation.

6 Conclusion
6.1 Summary
We have studied composition in general theories
which have the same dynamical and compositional
postulates as quantum theory but which have dif-
ferent measurement postulates. We presented a toy
model of a bi-partite system with alternative mea-
surement rules, showing that composition is possible
in such theories. We showed that all such theories
violate two compositional principles: local tomogra-
phy and purification.

6.2 Future work
The toy model introduced in this work applies only
to bi-partite systems and is simulable with quantum
theory. Hence an important next step is construct-
ing a toy model with alternative measurement rules
which is consistent with composition of more than
two systems. This requires a ? product which is as-
sociative. This construction may prove impossible,
or it may be the case that all valid constructions
are simulable by quantum theory. We suggest that
there are three possibilities when considering theo-
ries with fully associative products.

Possibility 1. (Logical consistency of postulates of
Quantum Theory). The only measurement postu-
lates which are fully consistent with the associativ-
ity of composition are the quantum measurement
postulates.

If this were the case it would show that the postu-
lates of quantum theory are not independent. Only
the quantum measurement rules would be consistent
with the dynamical and compositional postulates
(and operationalism). However it may be the case
that we can develop theories with alternative Born
rules which compose with an associative product,
but that all these theories are simulable by quan-
tum theory.

Possibility 2. (Simulability of systems in theories
with alternative postulates). The only measurement
postulates which are fully consistent with the dy-
namical postulates of quantum theory describe sys-
tems which are simulable with a finite number of
quantum systems.

Possibility 3. (Non-simulability of systems in theo-
ries with alternative postulates). There exist mea-
surement postulates which are fully consistent with

8



the dynamical postulates of quantum theory which
describe systems which are not simulable with a fi-
nite number of quantum systems.

This final possibility would be interesting from the
perspective of GPTs as it would show that there are
full theories which can be obtained by modifying
the measurement postulates of quantum theory. It
would show that quantum theory is not, in fact, an
island in theory space.
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A Operational principles and consistency constraints
A.1 Single system
As stated in the main section the allowed sets of OPFs Fd are subject to some operational constraints.
We introduce features obeyed by operational theories and derive the consistency constraints C1. - C5.
from them. In the following we adopt a description of operational principles in terms of circuits, as in [8].
The basic operational primitives are preparations, transformations and measurements. These three are all
procedures. We define them in terms of inputs, outputs and systems.

Definition (Preparation procedure). Any procedure which has no input and outputs one or more systems
is a preparation procedure.

P

Figure 2: Diagrammatic representation of a single system preparation procedure

Definition (Transformation procedure). Any procedure which inputs one or more systems and outputs one
or more systems is a transformation.

T

Figure 3: Diagrammatic representation of a single system transformation procedure.

Definition (Measurement procedure). Any procedure which inputs on or more systems and has no output
is a measurement procedure.

O

Figure 4: Diagrammatic representation of a single system measurement procedure.

In the above “no input” and “no output” refers to output or input of systems, typically there will be a
classical input or output such as a measurement read-out.

Operational Implication (Composition of a procedure with a transformation). The composition of a
transformation with any procedure is itself a procedure of that kind.

For example the composition of a transformation and a measurement is itself a measurement.

Operational Assumption (Mixing). The process of taking two procedures of the same kind and imple-
menting them probabilistically generates a procedure of that kind.

Definition (Experiment). An experiment is a sequence of procedures which has no input or output.
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This principle entails that every experiment can be considered as a preparation and a measurement. The
experiment is fully characterised by the probabilities

p(O|P) , (24)

for all measurement outcomes O and all preparations P in the experiment.

P O

Figure 5: All experiments can be represented as a preparation and a measurement.

In this approach a system is an abstraction symbolised by the wire between the preparation procedure
and the measurement procedure. A system A can be represented as:

A

Figure 6: Diagrammatic representation of a system.

A.2 Pairs of systems

Given the above definitions it is natural to ask when an experiment can be described using multiple systems.
Let us consider a system which we represent using two wires:

A

B

Figure 7: Diagrammatic representation of a pair of systems.

These can only be considered as representing two distinct systems A and B if it is possible to independently
perform operations (transformations and measurements) on both systems.

Definition (Existence of subsystems [18]). A system can be considered as a valid composite system if an
operation on subsystem A and an operation on subsystem B uniquely specify an operation on AB independent
of the temporal ordering.

If the above property is not met, then the system cannot be considered as a composite (and should be
represented using a single wire). Diagrammatically this entails that any preparation of a composite system
is such that:

PAB

OB

OA

= PAB

OB

OA

Figure 8: Definition of a composite system in diagrammatic form.

Operational Implication (Joint measurements). Every measurement outcome OA on A and OB on B
defines a unique outcome (OA,OB) on AB.

The most general form of an experiment with two systems is:
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PAB
B
OAB

A

Figure 9: Generic two system experiment.

which can naturally be viewed as an experiment on a single system AB.

Definition (Separable procedures [7, 30]). Two independent preparations PA and PB which are indepen-
dently measured with outcomes OA and OB are such that:

p(OA,OB|PA,PB) = p(OA|PA)p(OB|PB) ,

In this case the joint procedures PA,PB and OA,OB are said to be separable.

PB OB

PA OA

Figure 10: Separable two system experiment.

By the definition of a preparation, any operational procedure which outputs a system is a preparation.
Hence consider the case where the measurement is separable. The procedure of making a joint preparation
and making a measurement on B is a preparation of a state A.

Operational Implication (Steering as preparation). Operationally Alice can make a preparation of system
A by making a preparation of AB and getting Bob to make a measurement on system B.

PAB

OB

Figure 11: Preparation by steering.

By the definition of a measurement any operational procedure which inputs a system and outputs no
system is a measurement. Consider the case where the preparation is separable. Then the procedure of
preparing system B and jointly measuring A and B is a measurement procedure on A.

PB

OAB

Figure 12: Measurement using ancilla.

Operational Implication (Measuring with an ancilla). A valid measurement for Alice consists in adjoining
her system to an ancillary system B and carrying out a joint measurement.
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In the case where both preparation and measurement are separable then the experiment can be viewed as
two separate experiments. In the bi-partite case there are no further methods of generating preparations
and measurements. Hence when determining whether a pair of systems is consistent with the operational
properties which arise from composition, these are the only features which we need to consider.

One may ask whether any further operational implications will emerge from considering more than two
systems.

Operational Assumption (Associativity of composition). The systems (AB)C and A(BC) are the same.

This implies that there are no new types of procedures which can be carried out on a single system by
appending more than one system. Consider an experiment with multiple systems A,B,C.... For any par-
titioning of the experiment which creates a preparation of system A, all regroupings of systems B,C, ...
are equivalent. This is a preparation by steering of system A conditional on a measurement on systems
B,C, ... which can be viewed as a single system. Diagrammatically it tells us that all ways of partitioning
an experiment with multiple systems are equivalent.

This entails the only constraints imposed by the operational framework will come from the assumptions
and implications outlined above. There are no further operational implications which emerge from the above
definitions and assumptions.

In the next section we translate the operational features above into the language of OPFs, and show which
constraints they impose on the OPF sets Fd.

A.3 Consistency constraints

We assume the Finiteness Principle holds, and that for a set of OPFs Fd there exists a finite linearly
generating set {Fi}Kd

i=1. That is to say:

F =
∑
i

ciFi . (25)

A.3.1 Constraint C1

Consistency constraint C1 follows directly from the fact that the composition of a transformation and a
measurement is a measurement.

A.3.2 Constraint C2

Definition (State). A state corresponds to an equivalence class of indistinguishable preparation procedures.

From this definition it follows that two states cannot be indistinguishable. This implies C2. In a system
where some pure states are indistinguishable the manifold of pure states would no longer be the set of rays
on Cd (as required by the first postulate).

A.3.3 Constraint C3

Consider a composite system AB. By the definition of a composite system above, for any OPF FA on A
and FB on B there exists an OPF FA ? FB on AB. By the assumption that mixing is possible, the outcome
{pi, F iA} is a valid outcome.

Operational Assumption (Mixing separable procedures). If two parallel processes are separable, it is
equivalent to mix them before they are considered as a joint process or after.

From the above assumption it follows that:

(
∑
i

piF
i
A) ? FB =

∑
i

pi(F iA ? FB) (26)

FA ? (
∑
i

piF
i
B) =

∑
i

pi(FA ? F
i
B) (27)
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If we further assume that it is possible to mix with subnormalised probabilities, i.e.
∑
i pi ≤ 1 then the ?

product is bi-linear. The identity uA ? uB = uAB follows from the fact that a separable measurement is a
valid measurement on AB, and hence:

uAB =
∑
i,j

(F iA ? F
j
B) = uA ? uB . (28)

Principle (Uncorrelated pure states). Given two systems A and B independently prepared in pure states
ψA and φB the joint state of the system AB is given by ψA ⊗ φB.

This principle, together with the definition of independent systems implies that:

(FA ? FB)(ψA ⊗ φB) = FA(ψA)FB(φB) (29)

A.3.4 Constraint C4

Let us consider the steering scenario. In this case the process of both Alice and Bob making a measurement
with outcome FA ?FB on a joint state φAB can be considered as a measurement with outcome FA on system
A prepared in a certain manner.

An arbitrary preparation of system A is given by {pi, ψiA}. Hence the steering preparation implies that for
each preparation of AB and for each local measurement outcome on B there exists a state {pi, ψiA} in which
system A is prepared. In the OPF formalism this means that for every φAB ∈ CdAdB and every FB ∈ FdB
there exists an ensemble {piφiA} such that

(FA ? FB)(φAB)
(uA ? FB)(φAB) =

∑
i

piFA(ψiA) , (30)

holds for all FA ∈ FdA . The normalisation occurs due to the fact that summing over the measurement
outcomes FA should give unity on both sides of the expression.

A.3.5 Constraint C5

Let us consider the scenario consisting in measuring with an ancilla. In this case Alice and Bob carry out a
joint measurement with outcomes FAB on a system in an uncorrelated state ψA⊗φB. This should correspond
to a valid measurement with outcome F ′A on system A prepared in state ψA. For each FAB ∈ FdAdB and for
each φB ∈ CdB there exists an F ′A ∈ FdA such that

FAB(ψA ⊗ φB) = F ′A(ψA) , (31)

for all ψA ∈ CdA .

B Violation of purification

In this appendix we show that all alternative measurement postulates violate purification (for an arbitrary
choice of ancillary system dimension).

As shown in [6] the representations Γd corresponding to alternative measurement postulates for systems
with pure states Cd (d > 2) are of the form

Γ =
⊕
j∈J
Ddj , (32)

where J is a list of non-negative integers (at least one of which is not 0 or 1) and Ddj are representations of
SU(d) labelled by Young diagrams (2j, j, . . . , j︸ ︷︷ ︸

d−2

).
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Consider a system SAB = {CdAdB ,ΓAB} which is the composite of two systems SA = {CdA ,ΓA} and
SB = {CdB ,ΓB}. Here the representations Γ are of the form (32). Let us define the following equivalence
classes of pure global states:

[|ψ〉AB]UB = {|ψ〉′AB ∈ CdAdB | |ψ〉′AB = IA ⊗ UB |ψ〉AB} (33)

All members of the same equivalence class are necessarily mapped to the same reduced state of Alice.
Otherwise, Bob could signal to Alice. We note that [26] makes use of this observation in a similar context.
Let us call the set of all these equivalence classes RB.

RB := {[|ψ〉AB]UB | |ψ〉AB ∈ CdAdB} (34)

The map from global states to reduced states can be defined on the equivalence classes [|ψ〉AB]UB since two
members of the same equivalence class are always mapped to the same reduced states. R : RB → SA is the
map from equivalence classes to reduced states:

R([|ψ〉AB]UB) = ω̄A(|ψ〉AB) , (35)

where ω̄A(|ψ〉AB) is the reduced state obtained in the standard manner from the global state |ψ〉AB (as
outlined in the following appendix). Next we prove that the image of R is smaller than SA for any non-
quantum measurement postulates. In other words there are some (local) mixed states in SA which are not
reduced states of the global pure states |ψ〉AB.

In the Schmidt decomposition a state |ψ〉AB is:

|ψ〉AB =
dA∑
i=1

λi |i〉A |i〉B , λi ∈ R ,
∑
i

λ2
i = 1 , (36)

where we assume that the Schmidt coefficients are in decreasing order λi ≥ λi+1. Two states with the same
coefficients and the same basis states on Alice’s side belong to the same equivalence class [|ψ〉AB]UB . Also,
two Alice’s basis differing only by phases (e.g. {|i〉A} and {eiθi |i〉A}) give rise to the same equivalence class.
Because the phases eiθi can be absorbed by Bob’s unitary.

Let us count the number of parameters that are required to specify an equivalence class in RB. First, we
have the dA − 1 Schmidt coefficients. Second, we note that the number of parameters to specify a basis in
CdA is the same as to specify an element of U(dA). Which is the dimension of its Lie algebra, d2

A, the set of
anti-hermitian matrices. Third, we have to subtract the dA irrelevant phases θi. The three terms together
give

(dA − 1) + d2
A − dA = d2

A − 1 (37)

Hence d2
A − 1 parameters are needed to specify elements of RB. The set Image(R) requires the same or

fewer parameters to describe as RB. This follows from the fact that every element of RB can be mapped to
distinct images, or multiple elements can be mapped to the same image.

Hence by requiring that Alice’s reduced states are in one-to-one correspondence with these equivalence
classes, her state space must have a dimension d2

A − 1. The only measurement postulates which generate a
state space with this dimension are the quantum ones. This follows from the fact that the dimension of the
irreducible representations Ddj corresponding to alternative measurement postulates are given by:

Dd
j =

( 2j
d− 1 + 1

) d−2∏
k=1

(
1 + j

k

)2
, (38)

This is equal to d2−1 for the case j = 1 (corresponding to the quantum state space). Moreover, since this is
the lowest dimensional (non-trivial) such representation there are no reducible representations of the form⊕
iDdi which are of dimension d2 − 1.
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C OPF formalism, representation theory and local tomography
In this appendix we show that each set of OPFs Fd is associated to a representation of the group SU(d).
We also show that the representations associated to locally tomographic systems with sets of OPFs FdAdB
have certain features when restricted to the local subgroup SU(dA)× SU(dB). It is these features which will
be used in the next appendix to show that all non-quantum measurement postulates lead to a violation of
local tomography. In the following we assume the Finiteness Principle holds.

C.1 Single systems

Lemma 1. To each set of measurement postulates Fd obeying the Finiteness Principle there exists a unique
representation Γd of SU(d) associated to that set.

Proof. We take a set of measurement postulates F , where {Fi} form a basis for F .

F (ψ) =
∑
i

ciFi(ψ) , ∀ψ . (39)

We consider an OPF F ◦ U :
(F ◦ U)(ψ) = F (Uψ) =

∑
i

ciFi(Uψ) (40)

Where
Fi(Uψ) = (Fi ◦ U)(ψ) =

∑
j

Γ̄ji (U)Fj(ψ) . (41)

Hence
F ◦ U(ψ) =

∑
ij

ciΓ̄ji (U)Fj(ψ) (42)

Consider

F (UU ′ψ) =
∑
ij

ciΓ̄ji (U)Fj(U ′ψ)

=
∑
ijk

ciΓ̄ji (U)Γ̄kj (U ′)Fk(ψ) (43)

We can also consider UU ′ as a single element:

F (UU ′ψ) =
∑
ik

ciΓ̄ki (UU ′)Fk(ψ) (44)

This shows that Γ̄(UU ′) = Γ̄(U)Γ̄(U ′) and the map Γ̄ : U 7→ Γ̄(U) is a representation of SU(d).

Lemma 2. The representation Γ̄d of measurement postulates Fd contains a unique trivial subrepresentation.

Proof. Consider a set of OPFs {F (i)} which form a measurement. The OPF u =
∑
F (i) is such that

u(ψ) = 1 ∀ψ. Consider the basis {Fi} where F1 = u. We observe that u(ψ) = u(Uψ), ∀U ∀ψ. This
implies that Γ̄(U)u = u ∀U and that the representation Γ has a trivial component. If the representation
had another trivial component, it would necessarily be linearly dependent on the first. It would then be
a redundant entry in the list of fiducial outcomes which is contrary to the property that they are linearly
independent.

C.2 Composite systems

The measurement structure FAB contains all measurements of the form FA?FB where FA ∈ FA and FB ∈ FB.
Let {F iA} and {F jB} be bases for the two OPF spaces. Then the OPFs F iA ? F

j
B form a basis for the global

OPFs FA ? FB. Hence a basis for FAB is {F iA ? F
j
B, F

k
AB} [31, 32].
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C.2.1 Local tomography

A bi-partite system is locally tomographic if {F iA ? F
j
B}ij is a basis for RFdAdB .

Lemma 3. For a locally tomographic bi-partite system with representation Γ̄dAdB the restriction of Γ̄dAdB

to SU(dA)× SU(dB) is:
Γ̄dAdB
|SU(dA)×SU(dB) = Γ̄dA � Γ̄dB (45)

Proof. Let us consider the action of an element of SU(dA)× SU(dB) on an OPF FAB =
∑
ij γij(F iA ⊗ F

j
B) in

FAB .

Γ̄dAdB
UA⊗UB

FAB = FAB ◦ (UA ⊗ UB) =
∑
ij

γij(F iA ⊗ F
j
B) ◦ (UA ⊗ UB) . (46)

Using the fact that (FA ⊗ FB) ◦ (UA ⊗ UB) = (FA ◦ UA)⊗ (FB ◦ UB):

Γ̄dAdB
UA⊗UB

FAB =
∑
ij

γij(F iA ◦ UA)⊗ (F jB ◦ UB) . (47)

From the actions of SU(dA) and SU(dB) on RFdA and RFdB we have:

F iA ◦ UA = Γ̄dA
UA
F iA , (48)

F jB ◦ UB = Γ̄dB
UB
F jB . (49)

Hence,

Γ̄dAdB
UA⊗UB

FAB =
∑
ij

γij(Γ̄dA
UA
F iA ⊗ Γ̄dB

UB
F jB) =

∑
ij

γij(Γ̄dA
UA
⊗ Γ̄dB

UB
)(F iA ⊗ F lB) = (Γ̄dA

UA
⊗ Γ̄dB

UB
)FAB . (50)

C.2.2 Holistic systems

A bi-partite system which is not locally tomographic is holistic. Real vector space quantum theory is an
example of a holistic theory [33]. A basis for FdAdB in a holistic bi-partite system is {F iA?F

j
B, F

k
AB}ijk [31, 32].

Here {F iA ? F
j
B}ij span the locally tomographic subspace of FdAdB denoted FLT

dAdB
. Due to bilinearity of the

? product the map ? : RFdA × RFdB → RFLT
dAdB

is isomorphic to a tensor product.

Lemma 4. For a holistic bi-partite system with representation Γ̄dAdB the restriction of Γ̄dAdB to SU(dA) ×
SU(dB) is:

Γ̄dAdB
|SU(dA)×SU(dB) = Γ̄dA � Γ̄dB ⊕

⊕
i

ΓdA
i � ΓdB

i , (51)

where the representations Γ̄dAdB , Γ̄dA and Γ̄dB contain a trivial representation. This is not necessarily the
case for ΓdA

i and ΓdB
i (which may not be of the form DdA

j or DdB
j ).

Proof. In holistic systems a basis for FAB is {F iA ⊗ F
j
B, F

k
AB}ijk.

FAB =
∑
ij

γLT
ij (F iA ⊗ F

j
B) +

∑
k

γH
k F

k
AB = FLT

AB + FH
AB . (52)

We consider the action of a SU(dA)× SU(dB) subgroup on span({F iA ⊗ F
j
B}ij).

F iA ⊗ F
j
B ◦ (UA ⊗ UB) = (F iA ◦ UA)⊗ (F jB ◦ UB) . (53)

The action of SU(dA) × SU(dB) maps basis elements of the form FA ⊗ FB to other elements of that form.
Hence span(F iA ⊗ F

j
B) is a proper subspace of FAB left invariant under the action of SU(dA)× SU(dB). The

representation Γ̄dAdB
|SU(dA)×SU(dB) is reducible and decomposes as:

Γ̄dAdB
|SU(dA)×SU(dB) = Γ̄dAdB

LT|SU(dA)×SU(dB) ⊕ ΓdAdB
H|SU(dA)×SU(dB) . (54)

The action Γ̄dAdB
LT|SU(dA)×SU(dB) on the locally tomographic subspace is of the form Γ̄dA � Γ̄dB (as determined in

the previous lemma). ΓdAdB
H|SU(dA)×SU(dB) is an arbitrary representation of SU(dA)× SU(dB) hence of the form⊕

i ΓdA
i � ΓdB

i .
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C.3 Representation theoretic criterion for local tomography
Consider a bi-partite system with alternative measurement postulates FdAdB , FdA and FdB . If the theory is
locally tomographic then necessarily:

Γ̄dAdB
|SU(dA)×SU(dB) = Γ̄A � Γ̄B (55)

Where Γ̄A and Γ̄B both contain a unique trivial representation. By contraposition, any system which has
a representation Γ̄dAdB

AB which does not have this form when restricted SU(dA) × SU(dB) cannot obey local
tomography. This allows us to establish the following test for violation of local tomography:

Lemma 5. Given a bi-partite system with measurement postulates FdAdB , FdA and FdB . The associated
representation are Γ̄dAdB

AB , Γ̄dA
A and Γ̄dB

B . If Γ̄dAdB
|SU(dA)×SU(dB) is not of the form (55) then the system is holistic.

C.3.1 Affine representation and existence of trivial times trivial as a criterion

The above lemmas can be translated into the affine representation Γd which do not contain a trivial sub-
representation.

Γ̄d = 1d ⊕ Γd . (56)
where 1d is the trivial representation of SU(d). We can decompose the tensor product action:

Γ̄dA � Γ̄dB = (1dA ⊕ ΓdA) � (1dB ⊕ ΓdB) = (1dA � 1dB)⊕ (1dA � ΓdB)⊕ (ΓdA � 1dB)⊕ (ΓdA � ΓdB) . (57)

The first term occurs due to the trivial component in Γ̄dAdB
AB = 1dAdB ⊕ ΓdAdB

AB .
For a locally tomographic system with OPF set FdAdB and representation Γ̄dAdB , the restriction of ΓdAdB

to the local subgroup SU(dA)× SU(dB), has the following form:

ΓdAdB
|SU(dA)×SU(dB) = (1dA � ΓdB)⊕ (ΓdA � 1dB)⊕ (ΓdA � ΓdB) . (58)

This shows that for a locally tomographic theory the representations ΓdAdB
AB|SU(dA)×SU(dB) cannot contain any

terms 1dA � 1dB . By contraposition we establish:

Lemma 6. Given a bi-partite system (CdAB ,FdAdB ,ΓdAdB) with subsystems (CdA ,FdA ,ΓdA) and
(CdB ,FdB ,ΓdB) then if ΓdAdB

AB has a subrepresentation 1dA � 1dB upon restriction to SU(dA) × SU(dB) the
composite system is holistic.

D Background representation theory
D.1 Background
D.1.1 Young diagram

A Young diagram is a collection of boxes in left-justified rows, where each row-length is in non-increasing
order. The number of boxes in each row determine a partition of the total number of boxes n. This partition
denoted λ is associated to the Young diagram which is said to be of shape λ. We write |λ| = n for the total
number of boxes.

A Young diagram withm rows (labelled 1 tom) where row i has ni boxes (by definition n1 ≥ n2 ≥ ... ≥ nm)
is written λ = (n1, n2, ..., nm). By definition: ∑

i

ni = n (59)

λ1 = , λ2 = , λ3 = . (60)

The above Young diagrams are λ1 = (2, 1), λ2 = (3, 3, 2, 1) and λ3 = (5, 2, 1, 1).
In the case where a diagram has m multiple rows of the same length l we write lm instead of writing out

“l” m times.. For instance λ2 = (32, 2, 1)
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D.1.2 Representations of SU(d)

The special unitary group SU(d) is the Lie group of d × d unitary matrices of determinant 1. A finite-
dimensional representation of SU(d) is a smooth homomorphism SU(d) → GL(V ), with V a finite-
dimensional (complex) vector space.

Irreducible representations of SU(d) are labelled by Young diagrams with at most d rows. There is no
limit on the total number of boxes. A column of d boxes can be removed from a Young diagram of a
representation of SU(d) without changing the representation labelled by the diagram. Hence an irreducible
representation of SU(d) corresponds to an equivalence class of Young diagrams up to columns of size d.
Typically the canonical representative member of the equivalence class is the Young diagram where all
columns of length d have been removed. With this choice of representative element of each class the Young
diagram of representations of SU(d) have at most d−1 rows. For example the equivalence class of rectangular
Young diagrams of columns of length d are all mapped to the empty diagram (since all columns are removed).

λ1 = , λ2 = , λ3 = . (61)

These three Young diagrams are equivalent up to columns of length 4. They all label the same represen-
tation of SU(4). The canonical representative of the equivalence class is λ3. In the following the expression
“representation of SU(d) labelled by the Young diagram λ” is used to mean “representation of SU(d) labelled
by the equivalence class of Young diagrams with representative member λ”. The young diagram labels
the fundamental representation of SU(d). The empty diagram labels the trivial representation.

Given a canonical representative λ we call λf the diagram in the same equivalence class which has f boxes
(in other words to which a number of columns of length d have been added such that the total number of
boxes is f). For example λ2 = λ3

8.

Γdλ is the representation of SU(d) associated to the Young diagram λ. The index d will be dropped when
the context makes it obvious.

D.1.3 Representations of the symmetric group

The symmetric group on n symbols Sn has as group elements all permutation operations on n distinct
symbols. The conjugacy classes of Sn are labelled by partitions of n. Hence the number of (inequivalent)
irreducible representations of Sn is the number of partitions of n. Moreover these irreducible representations
can be parametrised by partitions of n. These are labelled by Young diagrams with n boxes [34].

∆n
λ denotes the representation of Sn labelled by the Young diagram λ. The index n will be dropped when

the context makes it obvious.

D.2 Branching rule SU(mn)→ SU(m)× SU(n)

D.2.1 Definition

Consider an irreducible representation Γmnλ of SU(mn) and restrict it to a SU(m)× SU(n) subgroup:

Γmnλ (U1 ⊗ U2), ∀U1 ∈ SU(m) ,∀U2 ∈ SU(n) . (62)

In general this will yield a reducible representation of SU(m)× SU(n). This representation will be built of
irreducible representations Γmµ � Γnν

(Γmµ � Γnν )(U1, U2) = Γmµ (U1)⊗ Γnν (U2) , (63)

We write Γmnλ|SU(m)×SU(n) for the restriction of Γmnλ to a SU(m)× SU(n) subgroup. In general:

Γmnλ|SU(m)×SU(n) =
⊕
µ,ν

Γmµ � Γnν , (64)
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Where there can be repeated copies for a given µ, ν. In general finding which representations Γmµ �Γnν occur
in this restriction is a hard problem. In the following we outline a method which allows us to determine the
multiplicity of Γmµ � Γnν in Γmnλ|SU(m)×SU(n). λ , µ and µ will refer to the Young diagrams of Γmnλ , Γmµ and Γnν
respectively.

D.2.2 Inner product of representations of the symmetric group

We consider two representations ∆µ and ∆ν of Sf . We construct the Kronecker product of the two matrices
∆µ(s) and ∆ν(s) for all s ∈ Sf . This creates a representation which we call the tensor product ∆µ ⊗ ∆ν

(sometimes called the inner product). In general this is a reducible representation:

∆µ ⊗∆ν =
⊕
λ

g(µ, ν, λ)∆λ (65)

Here we abuse notation slightly to mean that g(µ, ν, λ) is the multiplicity of ∆λ in ∆µ⊗∆ν . These g(µ, ν, λ)
are known as the Clebsch-Gordan coefficients of the symmetric group, and understanding them remains one
of the main open problems in classical representation theory. These coefficients are also relevant in quantum
information theory, as they are related to the spectra of statistical operators [35].

D.2.3 Recipe

What is the multiplicity of Γmµ � Γnν in the restriction of Γmnλ to SU(m) × SU(n)? We adopt the approach
from [36] to answer this question. Let f = |λ| be the number of boxes in the Young diagram λ. As shown

above λ also labels a representation of the symmetric group on f objects Sf . This representation is ∆f
λ.

Take the Young diagram µ (ν) and add columns of m (n) boxes to the left until it has f boxes. The tableau
obtained which we call µf (νf ) labels a representation of Sf denoted ∆f

µf
(∆f

νf
). We remember that adding

columns to the left of length m (n) keeps µ (ν) within the equivalence class of Young diagrams labelling the
representation Γmµ (Γnν ). Hence µf (νf ) labels the same representation of SU(m) (SU(n)) as µ (ν).

Hence the diagrams λ , µf and νf refer both to representations of the special unitary group Γmnλ ,

Γmµ (= Γmµf
) and Γnν (= Γnνf

) as well as representations of Sf : ∆f
λ, ∆f

µf
and ∆f

νf
.

Theorem 1. Γmµ � Γnν occurs as many times in the restriction of Γmnλ to SU(m) × SU(n) as ∆f
λ occurs in

∆f
µf
⊗∆f

νf
, where f = |λ| [36].

D.3 Inductive lemma

Lemma 7. Consider representations Γmn
λ̄

, Γmµ̄ , Γnν̄ , Γmnλ , Γmµ , Γnν , Γmnλ′ , Γmµ′ and Γnν′ where λ̄ = λ + λ′,
µ̄ = µ+ µ′ ν̄ = ν + ν ′ and |λ|−|µ|m , |λ|−|ν|n , |λ

′|−|µ′|
m and |λ

′|−|ν′|
n are integers. If Γmnλ|SU(m)×SU(n) contains a term

Γmµ � Γnν and Γmnλ′|SU(m)×SU(n) contains a term Γmµ′ � Γnν′ then Γmn
λ̄|SU(m)×SU(n) contains a term Γmµ̄ � Γnν̄ .

Proof. Γmnλ|SU(m)×SU(n) containing a term Γmµ � Γnν implies that ∆f
λ occurs in ∆f

µf
⊗ ∆f

νf
(by Theorem 1).

Here µf is the tableau µ (ν) to which f−|µ|
m (f−|ν|n ) columns of length m (n) has been added so that the total

number of boxes |µf | = f (|νf | = f).

µf = µ+
((

f − |µ|
m

)m)
, (66)

νf = ν +
((

f − |ν|
n

)n)
. (67)

Here we recall that ((f−|µ|m )m) indicates m rows of length ((f−|µ|m ). This implies that g(λ, µf , νf ) > 0.
Similarly g(λ′, µ′f ′ , ν ′f ′) > 0.

We now show that µ̄ = µ+ µ′ and ν̄ = ν + ν ′ implies that µ̄f̄ = µf + µ′f ′ and ν̄f̄ = νf + ν ′f ′ .
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µf + µ′f ′ = µ+ µ′ +
((

f − |µ|
m

)m)
+
((

f ′ − |µ′|
m

)m)
(68)

= µ̄+
(((f + f ′ − |µ| − |µ′|)

m

)m)
(69)

= µ̄+
((

f̄ − |µ̄|
m

)n)
= µ̄f̄ . (70)

And similarly for ν̄.
Let us make use of a property of the Clebsch Gordan coefficients called the semi-group property. If

g(λ, µf , νf ) > 0 and g(λ′, µ′f ′ , ν ′f ′) > 0 then g(λ+λ′, µf +µ′f ′ , νf +ν ′f ′) > 0 [37]. By the semi-group property
we have g(λ̄, µ̄f̄ , ν̄f̄ ) > 0. This implies that ∆f̄

λ̄
occurs in ∆f̄

µ̄f̄
⊗ ∆f̄

µ̄f̄
. By Theorem 1 this implies that

Γmn
λ̄|SU(m)×SU(n) contains a term Γmµ̄ � Γmν̄ .

E Violation of local tomography in all alternative measurement postulates
In the following we establish that Γ9

|SU(3)×SU(3) is not of the form (58) for all representations Γ9 of SU(9) cor-

responding to non quantum state spaces with pure states C9. We show explicitly that every such restriction
contains a term of 13 � 13, where 13 is the trivial representation of SU(3).

E.1 Arbitrary dimension d

We now construct a proof by induction to show that the representations Ddj are not compatible with local

tomography when restricted to SU(dA)× SU(dB). A representation Ddj will violate local tomography if it is

not of the form (58) when restricted to SU(dA)× SU(dB). It suffices to show that there is a term 1dA � 1dB

in this restriction in order to show that it is not of this form.

Lemma 8. If the representations Ddj and Dd2 of SU(d) contain a term 1dA �1dB when restricted to SU(dA)×
SU(dB) then so does Ddj+2

Proof. Let

Γdλ = Ddj , ΓdA
µ = 1dA , ΓdB

ν = 1dB (71)

Γdλ′ = Dd2 , ΓdA
µ′ = 1dA , ΓdB

ν′ = 1dB (72)

Γλ̄ = Ddj+2, Γµ̄ = 1dA , ΓdB
ν̄ = 1dB , (73)

where

λ = (2j, jd−2), µ = 0, ν = 0 , (74)
λ′ = (4, 2d−2), µ′ = 0, ν ′ = 0 , (75)
λ̄ = (2j + 4, (j + 2)d−2), µ̄ = 0, ν̄ = 0 . (76)

We observe

λ̄ = λ+ λ′, µ̄ = µ+ µ′, ν̄ = ν + ν ′ (77)
f = |λ| = jd, f ′ = |λ′| = 2d, f̄ = |λ̄| = d(j + 2) (78)

Next we check that the quantities below are integer valued:
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|λ| − |µ|
m

= jd

dA
= jdB , (79)

|λ| − |ν|
n

= jd

dB
= jdA , (80)

|λ′| − |µ′|
m

= 2d
dA

= 2dB , (81)

|λ′| − |ν ′|
n

= 2d
dB

= 2dA . (82)

From Lemma 7 it follows that if Ddj contains a representation 1dA � 1dB and Dd2 contains a representation
1dA � 1dB when restricted to SU(dA)×SU(dB) then Ddj+2 contains a representation 1dA � 1dB when restricted
to SU(dA)× SU(dB).

Hence it suffices to show that Dd2 and Dd3 contain 1dA � 1dB when restricted to SU(dA)× SU(dB) to show
that Ddj does for any j > 1.

E.2 Existence of 13 � 13 for all non-quantum representations of SU(9)

Using Sage software [38] we can show that D9
2 and D9

3 have a representation 13 � 13 when restricted to
SU(3)× SU(3). By Lemma 8 all representations D9

j , j > 1 have this property. An arbitrary representation
corresponding to an alternative Born rule for C9 is of the form:

Γ9 =
⊕
j∈J
D9
j (83)

Where J is a list of positive integers containing at least one integer which is not 1. Since at least one (non-
trivial) subrepresentation in Γ9 has a 13 � 13 when restricted to SU(3) × SU(3) so does the representation
Γ9.

E.3 Violation of local tomography for all theories

Every representation Γ9 of SU(9) of the form (83) has a representation 13 � 13 when restricted to SU(3)×
SU(3). It follows from this that the restriction of Γ9 to SU(3)× SU(3) is not of the form required for local
tomography. From this it follows that all non-quantum C9 systems which are composites of two C3 systems
violate local tomography.

In order to show that a theory with systems Cd (for every d > 1) violates local tomography, it is sufficient
to show that one of the systems in the theory violates local tomography. Since all C9 non-quantum systems
violate local tomography it follows that all non-quantum theories with systems Cd violate local tomography.
We emphasise that here we consider theories for which all values of d > 1 are possible.

F Composition in GPTs

In the earlier appendices we gave a certain primacy to the space of OPFs, and considered the group action
on the linear space spanned by the OPFs. However it is equally valid (and more common) to give primacy to
the space of states and consider the group action on this space. This standard representation will be helpful
for proving the consistency of the toy model. Indeed the consistency constraints required for composition
translate naturally to the language of states. This section is largely without proof, as the proofs carry over
naturally from the OPF formalism to the standard state formalism. We refer the reader to [32] for more
detailed proofs.
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F.1 Representation of states
The set of mixed states span a real vector space. A state is a vector:

ω̄ =


F1(ω)
F2(ω)

...
FKd

(ω)

 , (84)

An arbitrary F ∈ Fd can be expressed:
F =

∑
i

ciFi (85)

To each F we can associate a dual vector (or effect) ĒF

ĒF = (c1, ..., cKd
) , (86)

By definition ĒF · ω̄ = F (ω). Let ū be effect associated to the unit OPF. Since ū · ω̄ = 1 there is a component
for all states ω̄ which is constant. That is to say we can choose F1 to be the unit OPF:

ω̄ =
(

1
ω

)
, (87)

The group representation Γd acting on the state space is of the form Γd = 1d + Γd (Γd may be reducible or
irreducible). We can write

ĒF · ω̄ = c1 + EF · ω (88)
In the representation where the trivial component is removed (by an affine transformation) then states

are ω (whose fiducial outcomes are affinely independent), the group representation is Γd and outcome
probabilities are affine functions EF of the state ω. We observe that from the uniqueness of the trivial
component in Γd it follows that Γd cannot contain any trivial subrepresentation.

F.2 Local tomography
Consider measurement postulates FdAdB , FA and FB. States for Alice and Bob can be written as:

ω̄A =


F 1

A(ωA)
F 2

A(ωA)
...

F
KdA
A (ωA)

 , (89)

and

ω̄B =


F 1

B(ωB)
F 2

B(ωB)
...

F
KdB
B (ωB)

 . (90)

Definition (Local tomography). A composite system SAB is locally tomographic if it has fiducial outcomes
{(F iA ? F

j
B)}i=KdA ,j=KdB

i=1,j=1 . A state of the composite system can be written:

ω̄AB =


(F 1

A ? F
1
B)(ωAB)

(F 1
A ? F

2
B)(ωAB)
...

(FKdA
A ? F

KdB
B )(ωAB)

 , (91)

We observe that Ē
F i

A?F
j
B

= ĒF i
A
⊗ Ē

F j
B
. Indeed any joint local effect ĒFA?FB = ĒFA ⊗ ĒFB . Product states

are of the form ω̄A ⊗ ω̄B.
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F.3 Non-locally-tomographic theories
The states of a composite system SAB of a non-locally tomographic (or holistic) theory can be written
as [31, 32]:

ω̄AB =
(
λ̄AB
ηAB

)
, (92)

where

λ̄AB =


(F 1

A ? F
1
B)(ωAB)

(F 1
A ? F

2
B)(ωAB)
...

(FKdA
A ? F

KdB
B )(ωAB)

 , (93)

is the locally tomographic part and

ηAB =


F 1

AB(ωAB)
...

F
KdAdB−KdAKdB
AB (ωAB)

 , (94)

is the holistic part. The probability for a joint outcome FA ? FB is given by:

(FA ? FB)(ωAB) = (ĒFA ⊗ ĒFB) · λ̄AB (95)

Joint local effects are computed using the locally tomographic part of the state space only.

F.4 The reduced state space
The reduced states for Alice and Bob can be computed as follows:

ω̄A = (Γ̄dA(IA)⊗ uB)λ̄AB (96)
ω̄B = (uA ⊗ Γ̄dB(IB))λ̄AB (97)

Reduced states are determined using only the locally tomographic part of the global state.

G Toy model
In this appendix we show that the toy model introduced in section 4 meets consistency constraints C1 -
C5 (apart from associativity of the ? product).

G.1 Constraints C1 and C2
It is immediate that consistency constraints C1 and C2 are met by the toy model.

G.2 Constraint C3
We prove (FA ? FB)(ψA ⊗ φB) = FA(ψA)FB(φB) :

(FA ? FB)(ψA ⊗ φB)

= tr
(
|ψ〉〈ψ|⊗2

A |φ〉〈φ|
⊗2
B (F̂AF̂B + tr(F̂AF̂B)

tr(SASB)AAAB)
)

=tr
(
|ψ〉〈ψ|⊗2

A |φ〉〈φ|
⊗2
B F̂AF̂B

)
= FA(ψA)FB(φB) . (98)

In the penultimate line we have used the fact that the overlap of product states |ψ〉〈ψ|⊗2
A |φ〉〈φ|

⊗2
B and AAAB

is 0.
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G.3 Constraint C4
In the following it will occasionally useful to label the two copies of CdA with 1 and 3 and to label the
two copies of CdB with 2 and 4. We write S̃A for the normalised projector onto the symmetric subspace of
(CdA)⊗2. We make use of the identity S = 1

2(I + SWAP) throughout this section.
In this section we show that normalised conditional states for Alice are valid states of a CdA system. We

first show this for the specific case where the state is conditioned on the unit effect, i.e. is a reduced state.
A reduced state of Alice for a bi-partite system in pure state |ψAB〉〈ψAB|⊗2 is:

ω̄A = trB
(
SB|ψAB〉〈ψAB|⊗2

)
+ SA

trSA
trAB

(
AAAB|ψAB〉〈ψAB|⊗2

)
. (99)

We show that these reduced states lie in the convex hull of |ψA〉〈ψA|⊗2.

Lemma 9. SB |ψAB〉⊗2 = SASB |ψAB〉⊗2

Proof.
|ψAB〉⊗2 = αi1i2αi3i4 |i1i2i3i4〉 . (100)

SB |ψAB〉⊗2 = 1
2αi1i2αi3i4(|i1i2i3i4〉+ |i1i4i3i2〉) . (101)

Let us relabel i1 ↔ i3 in the last term:

SB |ψAB〉⊗2 = 1
2(αi1i2αi3i4 |i1i2i3i4〉+ αi3i2αi1i4 |i3i4i1i2〉) . (102)

SASB |ψAB〉⊗2 = 1
4αi1i2αi3i4(|i1i2i3i4〉+ |i1i4i3i2〉+ |i3i2i1i4〉+ |i3i4i1i2〉) . (103)

Let us relabel i1 ↔ i3 in the second term , i2 ↔ i4 in the penultimate term and i1 ↔ i3 and i2 ↔ i4 in the
last term :

SASB |ψAB〉⊗2 = 1
4(αi1i2αi3i4 |i1i2i3i4〉+ αi3i2αi1i4 |i3i4i1i2〉 (104)

+αi1i4αi3i2 |i3i4i1i2〉+ αi1i2αi3i4 |i1i2i3i4〉) = 1
2(αi1i2αi3i4 |i1i2i3i4〉+ αi3i2αi1i4 |i3i4i1i2〉) . (105)

From the above lemma we can write a reduced state ω̄:

ω̄A = trB
(
SASB|ψAB〉〈ψAB|⊗2

)
+ SA

trSA
trAB

(
AAAB|ψAB〉〈ψAB|⊗2

)
. (106)

Lemma 10. The reduced state ω̄A can be written as:

ω̄A = SA(ρA ⊗ ρA)SA + (1− tr(SA(ρA ⊗ ρA)SA))S̃A , (107)

where ρA = trB(|ψ〉〈ψ|AB).

Proof. We first show that:
trB(SASB|ψ〉〈ψ|⊗2

AB) = SA(ρA ⊗ ρA)SA . (108)

From the proof of Lemma 9:

SASB |ψAB〉⊗2 = 1
4αi1i2αi3i4(|i1i2i3i4〉+ |i1i4i3i2〉+ |i3i2i1i4〉+ |i3i4i1i2〉) . (109)

Hence:

SASB|ψAB〉〈ψAB|⊗2 =1
4αi1i2αi3i4ᾱj1b1ᾱj3b2(|i1i2i3i4〉〈j1j2j3j4| (110)

+|i1i4i3i2〉〈j1j2j3j4|+ |i3i2i1i4〉〈j1j2j3j4|+ |i3i4i1i2〉〈j1j2j3j4|) . (111)
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which implies:

trB(SASB|ψ〉〈ψ|⊗2
AB) = 1

2αi1b1αi3b2ᾱj1b1ᾱj3b2(|i1i3〉〈j1j3|+ |i3i1〉〈j1j3|) . (112)

We now compute SA(ρA ⊗ ρA)SA.

|ψ〉〈ψ|AB = αi1i2ᾱj1j2 |i1i2〉〈j1j2| . (113)

ρA = trB(|ψ〉〈ψ|AB) = αi1b1ᾱj1b1 |i1〉〈j1| . (114)

ρA ⊗ ρA = αi1b1αi3b2ᾱj1b1ᾱj3b2 |i1i3〉〈j1j3| . (115)

SA(ρA ⊗ ρA) = 1
2αi1b1αi3b2ᾱj1b1ᾱj3b2(|i1i3〉〈j1j3|+ |i3i1〉〈j1j3|) . (116)

SA(ρA ⊗ ρA)SA =1
4αi1b1αi3b2ᾱj1b1ᾱj3b2(|i1i3〉〈j1j3|+ |i3i1〉〈j1j3|) (117)

+1
4αi1b1αi3b2ᾱj1b1ᾱj3b2(|i1i3〉〈j3j1|+ |i3i1〉〈j3j1|) . (118)

In the second term we relabel j1 ↔ j3, i1 ↔ i3 and b1 ↔ b2 to obtain:

SA(ρA ⊗ ρA)SA = 1
2(αi1b1αi3b2ᾱj1b1ᾱj3b2(|i1i3〉〈j1j3|+ |i3i1〉〈j1j3|)) . (119)

Hence,

ω̄A = SA(ρA ⊗ ρA)SA + (1− tr(|ψ〉〈ψ|⊗2
ABSASB))S̃A

= SA(ρA ⊗ ρA)SA + (1− tr(SA(ρA ⊗ ρA)SA))S̃A . (120)

Lemma 11. The reduced states ω̄A belong to the convex hull of the local pure states |ψ〉〈ψ|⊗2.

Proof. By Lemma 10 the reduced state can be written as:

ω̄A = SA(ρA ⊗ ρA)SA + (1− tr(SA(ρA ⊗ ρA)SA))S̃A , (121)

where ρA = trB(|ψ〉〈ψ|AB). In the following we drop the A label.

ρ =
∑
i

αi|i〉〈i| , (122)

Here the |i〉 are not necessarily orthogonal. The trace of ρ is
∑
i αi = 1, where αi > 0. Let us write

Φij = 1√
2(|i, j〉+ |j, i〉) and observe:

∑
i 6=j
|Φij〉〈Φij | = 2

∑
i<j

|Φij〉〈Φij | =
∑
i 6=j

(|i, j〉〈i, j|+ |i, j〉〈j, i|) . (123)

Consider the (not necessarily normalised) matrix

S(ρ⊗ ρ)S = S(
∑
ij

αiαj |i, j〉〈i, j|)S =
∑
i

α2
i |i, i〉〈i, i|+

∑
i<j

αiαj |Φij〉〈Φij | , (124)

The trace of this matrix is 1−
∑
i<j αiαj ; hence:

ω̄ =
∑
i

α2
i |i, i〉〈i, i|+

∑
i<j

αiαj |Φij〉〈Φij |+
∑
i<j

αiαjS̃ . (125)
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We now show that this arbitrary mixed state ω̄ can be expressed as a convex combination of local pure
states |ψ〉〈ψ|⊗2. Consider the general vector

|ψ〉 =
∑
i

eiθj
√
αj |j〉 , (126)

where αj ≥ 0 and for all j. Normalisation implies
∑
j αj = 1. Now, let us write the pure product state

|ψ〉〈ψ|⊗2 =
∑

j,k,j′,k′

eiθjeiθke−iθj′e−iθk′√αjαkαj′αk′ |j, k〉〈j′, k′| . (127)

Let us make the following observations. When j 6= j′:∫ π

−π
e−iθjeiθj′dθjdθj′ = 0 . (128)

When j = j′: ∫ π

−π
e−iθjeiθj′dθjdθj′ = (2π)2 . (129)

Now consider:

Eθi
|ψ〉〈ψ|⊗2 = 1

(2π)4

∫ π

−π

∑
j,k,j′,k′

eiθjeiθke−iθj′e−iθk′√αjαkαj′αk′ |j, k〉〈j′, k′|dθjdθkdθj′dθk′ . (130)

The non zero contributions will arise from the following terms:
j = j′ = k = k′: ∫ π

−π
|eiθj |4dθjdθkdθj′dθk′ = (2π)4 . (131)

j = j′ 6= k = k′: ∫ π

−π
|eiθj |2|eiθk |2dθjdθkdθj′dθk′ = (2π)4 . (132)

j = k′ 6= k = j′: ∫ π

−π
|eiθj |2|eiθk |2dθjdθkdθj′dθk′ = (2π)4 . (133)

All other contributions will be zero.
Now, we write the mixed state corresponding to the uniform average over all values of the phases θi,

ω̄1 = Eθi
|ψ〉〈ψ|⊗2 =

∑
j,k

αjαk|j, k〉〈j, k|+
∑
j 6=k

αjαk|j, k〉〈k, j| , (134)

where the first term arises from contributions (131) and (132) and the second term arises from contribu-
tion (133). Then we can write

ω̄1 =
∑
i

α2
i |i, i〉〈i, i|+ 2

∑
i<j

αiαj |Φij〉〈Φij | , (135)

Let us take the state:
ω̄2 =

∑
i

α2
i |i, i〉〈i, i|+ 2

∑
i<j

αiαjS̃ . (136)

This is a mixture of states of the form |ψ〉〈ψ|⊗2 since S̃ =
∫
|ψ〉〈ψ|⊗2dψ and

∑
i α

2
i + 2

∑
i<j αiαj = 1. If we

take the mixture 1
2(ω̄1 + ω̄2) we obtain (125).

We now consider the more general case where Alice’s state is conditioned on an arbitrary effect FB. The
conditional state for Alice given one of Bob’s effects FB is:

ω̄A|FB = TrB(SAF̂B|ψ〉〈ψ|⊗2
AB) + Tr(|ψ〉〈ψ|⊗2

ABAAAB)Tr(F̂B)
Tr(SB) S̃A . (137)

Although effects of the form F̂B = |φ〉〈φ|⊗2 are not valid (since the complement effects would not be of the
required form), we calculate the conditional state for such effects, as this will allow us to later determine
conditional states for general effects F̂B =

∑
i αi|φi〉〈φi|⊗2.
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Lemma 12. For F̂B = |φ〉〈φ|⊗2:

TrB(SAF̂B|ψ〉〈ψ|⊗2
AB) = SA(ρψA|φ ⊗ ρ

ψ
A|φ)SA = ρψA|φ ⊗ ρ

ψ
A|φ , (138)

where ρψA|φ = Tr((IA ⊗ |φ〉〈φ|B)|ψ〉〈ψ|AB) .

Proof.

TrB(SAF̂B|ψ〉〈ψ|⊗2
AB) = SATrB(F̂B|ψ〉〈ψ|⊗2

AB) = SA(ρψA|φ ⊗ ρ
ψ
A|φ) . (139)

Let

ρψA|φ = Tr
(
(IA ⊗ |φ〉〈φ|B)|ψ〉〈ψ|AB

)
=
∑
i1,j1

αi1,φᾱj1,φ|i1〉〈j1| . (140)

We assume without loss of generality that |φ〉 is one of the basis vectors |i〉.

ρψA|φ ⊗ ρ
ψ
A|φ =

∑
i1,i3,j1,j3

αi1,φᾱj1,φαi3,φᾱj3,φ|i1i3〉〈j1j3| . (141)

SA(ρA|φ ⊗ ρA|φ) =1
2(

∑
i1,i3,j1,j3

αi1,φᾱj1,φαi3,φᾱj3,φ|i1i3〉〈j1j3|

+
∑

i1,i3,j1,j3

αi1,φᾱj1,φαi3,φᾱj3,φ|i3i1〉〈j1j3|) . (142)

We relabel i1 ↔ i3 on the last line to obtain SA(ρA|φ ⊗ ρA|φ) = (ρA|φ ⊗ ρA|φ).

SA(ρA|φ ⊗ ρA|φ)SA = 1
4(

∑
i1,i3,j1,j3

αi1,φᾱj1,φαi3,φᾱj3,φ|i1i3〉〈j1j3|

+
∑

i1,i3,j1,j3

αi1,φᾱj1,φαi3,φᾱj3,φ|i3i1〉〈j1j3|+
∑

i1,i3,j1,j3

αi1,φᾱj1,φαi3,φᾱj3,φ|i1i3〉〈j3j1|

+
∑

i1,i3,j1,j3

αi1,φᾱj1,φαi3,φᾱj3,φ|i3i1〉〈j3j1|) . (143)

We relabel j1 ↔ j3 on the last two lines to obtain SA(ρA|φ ⊗ ρA|φ) = SA(ρA|φ ⊗ ρA|φ)SA.

We need one more lemma before proving that normalised conditional states belong to the convex hull of
the local pure states |ψ〉〈ψ|⊗2

A .

Lemma 13. If S(ρ⊗ ρ)S = ρ⊗ ρ with Tr(ρ) = 1 then ρ⊗ ρ =
∑
i pi|ψi〉〈ψi|⊗2.

Proof. By Lemma 11 this is a valid reduced state and belongs to conv(|ψ〉〈ψ|⊗2).

We observe that since all pure states are such that S(|ψ〉〈ψ|⊗2)S = |ψ〉〈ψ|⊗2 and Tr(|ψ〉〈ψ|⊗2) = 1, we can
characterise the state space of the systems of the toy model as being given by conv(ρ⊗ ρ) for all normalised
density operators such that S(ρ⊗ ρ)S = ρ⊗ ρ.

Lemma 14. The normalised conditional states ω̃A|FB belong to the convex hull of the local pure states
|ψ〉〈ψ|⊗2.

Proof. We first show that the conditional state is a valid local state for effects F̂B = |φ〉〈φ|⊗2. As a conditional
state, this state can be subnormalised.

ω̄A|FB = TrB(SAF̂B|ψ〉〈ψ|⊗2
AB) + cS̃A , (144)
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where c = Tr(|ψ〉〈ψ|⊗2
ABAAAB)Tr(F̂B)

Tr(SB) . By Lemma 12 we have the equivalence:

TrB(SAF̂B|ψ〉〈ψ|⊗2
AB) = (ρψA|φ ⊗ ρ

ψ
A|φ) . (145)

The normalised conditional state is:
ω̃A|FB =

ω̄A|FB

Tr(ω̄A|FB) . (146)

Let us set e = Tr(ω̄A|FB) and d = Tr(SAF̂B|ψ〉〈ψ|⊗2
AB) = Tr(ρψA|φ ⊗ ρ

ψ
A|φ); e = c+ d.

ω̃A|FB = 1
e

(ρA|φ ⊗ ρA|φ) + c

e
S̃A . (147)

We use the equality ρψA|φ ⊗ ρ
ψ
A|φ = d(ρ̃ψA|φ ⊗ ρ̃

ψ
A|φ) where ρ̃ψA|F is a standard normalised quantum conditional

state.

ω̃A|FB =d

e
(ρ̃ψA|φ ⊗ ρ̃

ψ
A|φ) + c

e
S̃A . (148)

By Lemma 12 ρ̃ψA|φ ⊗ ρ̃
ψ
A|φ = SA(ρ̃ψA|φ ⊗ ρ̃

ψ
A|φ)SA hence by Lemma 13 it is a valid normalised state (i.e. of

the form
∑
i pi|ψi〉〈ψi|⊗2). Since 0 < d

e < 1, 0 < c
e < 1 and d+c

e = 1 the above is a convex combination of
ρ̃ψA|φ ⊗ ρ̃

ψ
A|φ and S̃A which are both valid states. Hence the state ω̃A|FB is a valid local state.

Let FB =
∑
αi|φi〉〈φi|⊗2, with αi > 0.

ω̄A|FB =
∑
i

αi(TrB(SAF̂B|φi〉〈φi|⊗2|ψ〉〈ψ|⊗2
AB) + Tr(|ψ〉〈ψ|⊗2

ABAAAB) 1
Tr(SB) S̃A)

=
∑
i

αi
(
(ρψA|φi

⊗ ρψA|φi
) + ciS̃A) . (149)

Let e = tr(ωA|FB) and di = tr(ρψA|φi
⊗ ρψA|φi

). We have e =
∑
i αi(ci + di). From above:

ω̃A|FB =
∑
i

αi(
di
e

(ρ̃ψA|φi
⊗ ρ̃ψA|φi

) + ci
e
S̃A) . (150)

Since 0 < αidi
e < 1 and 0 <

∑
i
αici
e < 1 and

∑
i
αi(ci+di)

e = 1 the above is a convex combination of
(ρ̃ψA|φi

⊗ ρ̃ψA|φi
) with coefficients αidi

e and the state S̃A with coefficient
∑
i
αici
e .

G.4 Constraint C5
In this section we show that every OPFs in FG

dAdB
applied to a product state ψA ⊗ φB has a corresponding

OPF F ′A in FL
dA

. Let FAB be an arbitrary effect in FL
dAdB

. The corresponding operator is

F̂AB =
∑
i

αi|xi〉〈xi|12 ⊗ |xi〉〈xi|34 . (151)

We evaluate it on product states:

FAB(ψA ⊗ φB) =
∑
i

αiTr
(
|ψ〉〈ψ|⊗2

A |φ〉〈φ|
⊗2
B (|xi〉〈xi|⊗2

AB)
)

=
∑
i

αiTrA(|ψ〉〈ψ|⊗2
A TrB(|φ〉〈φ|⊗2

B (|xi〉〈xi|⊗2
AB)))

=
∑
i

αiTrA(|ψ〉〈ψ|⊗2
A SATrB(IA|φ〉〈φ|⊗2

B |xi〉〈xi|
⊗2
AB))

= TrA(|ψ〉〈ψ|⊗2
A (
∑
i

αi(SA(ρxi

A|φ ⊗ ρ
xi

A|φ)SA))) . (152)
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By Lemma 13 (SA(ρxA|φ⊗ρ
x
A|φ)SA is of the form

∑
j βj |φj〉〈φj |⊗2 with βj ≥ 0. Hence F̂ ′A = (

∑
i αi(SA(ρxi

A|φ⊗
ρxi

A|φ)SA) is a valid effect on A as long as its complement is also of the form
∑
i γi|φi〉〈φi|⊗2. Since the

complement of F̂AB is of the form
∑
i αi|xi〉〈xi|12⊗ |xi〉〈xi|34 it follows that the associated effect on A (which

is the complement of F̂ ′A) is of the required form. From this it follows that F̂ ′A is a valid effect. The set
FG
dAdB

also contains effects FA ? FB which are not necessarily of the form given above. However since these
are product effects they trivially are consistent with C5.
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