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The measurement postulates of quantum
mechanics are operationally redundant
Lluís Masanes1, Thomas D. Galley 1,2 & Markus P. Müller2,3

Understanding the core content of quantum mechanics requires us to disentangle the hidden

logical relationships between the postulates of this theory. Here we show that the mathe-

matical structure of quantum measurements, the formula for assigning outcome probabilities

(Born’s rule) and the post-measurement state-update rule, can be deduced from the other

quantum postulates, often referred to as “unitary quantum mechanics”, and the assumption

that ensembles on finite-dimensional Hilbert spaces are characterized by finitely many

parameters. This is achieved by taking an operational approach to physical theories, and

using the fact that the manner in which a physical system is partitioned into subsystems is a

subjective choice of the observer, and hence should not affect the predictions of the theory. In

contrast to other approaches, our result does not assume that measurements are related to

operators or bases, it does not rely on the universality of quantum mechanics, and it is

independent of the interpretation of probability.
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What sometimes is postulated as a fundamental law of
physics is later on understood as a consequence of
more fundamental principles. An example of this

historical pattern is the rebranding of the symmetrization pos-
tulate as the spin-statistics theorem1. Another example, according
to some authors, is the Born rule, the formula that assigns
probabilities to quantum measurements. The Born rule has been
derived within the framework of quantum logic2–5, taking an
operational approach6–9, and using other methods10–14. But all
these derivations assume, among other things, the mathematical
structure of quantum measurements, that is, the correspondence
between measurements and orthonormal bases, or more gen-
erally, positive-operator valued measures15,16.

Taking one step further, the structure of measurements toge-
ther with the Born rule can be jointly derived within the many-
worlds interpretation of quantum mechanics (QM)17,18 and the
framework of entanglement-assisted invariance19–22. But these
derivations involve controversial uses of probability in determi-
nistic multiverse scenarios, which have been criticized by a
number of authors21–31. Also, these frameworks require the
universality of QM, meaning that the measurement apparatus
and/or the observer has to be included in the quantum descrip-
tion of the measuring process. While this is a meaningful
assumption, it is interesting to see that it is not necessary, as
proven in the present article.

In this work we take an operational approach, with the
notions of measurement and outcome probability being pri-
mitive elements of the theory, but without imposing any par-
ticular structure on them. We use the fact that the subjective
choices in the description of a physical setup in terms of
operational primitives must not affect the predictions of the
theory. For example, deciding to describe a tripartite system
A·B·C as either the bipartite system AB·C or as A·BC must not
modify the outcome probabilities. Using these constraints we
characterize all possible alternatives to the mathematical
structure of quantum measurements and the Born rule, and we
prove that there is no such alternative to the standard mea-
surement postulates. This theorem has simple and precise
premises, it does not require unconventional uses of probability
theory, and it is independent of the interpretation of prob-
ability. A further interesting consequence of this theorem is that
the post-measurement state-update rule must necessarily be
that of QM.

Results
The standard postulates of QM. Before presenting the main
result we prepare the stage appropriately. This involves reviewing
some of the postulates of QM, reconstructing the structure of
mixed states from them, and introducing a general character-
ization of measurements that is independent of their mathema-
tical structure.

Postulate (states). To every physical system there corresponds a
complex and separable Hilbert space C

d , and the pure states of
the system are the rays ψ 2 PCd .

It will be convenient to use the notation C
d both for Hilbert

spaces of finite dimension d, and also for countably infinite-
dimensional Hilbert spaces which we denote by C

1. This
notation is justified, since all countably infinite-dimensional
Hilbert spaces are isomorphic32. Analogously we use U(∞) to
denote the unitary transformations of C1. In this document we
represent states (rays) by normalized vectors ψ 2 C

d .
Postulate (transformations). The reversible transformations (for

example, possible time evolutions) of pure states of Cd are the
unitary transformations ψ 7!Uψ with U∈U(d).

Postulate (composite systems). The joint pure states of systems
C

a and C
b are the rays of the tensor-product Hilbert space

C
a � C

b.
Postulate (measurement). Each measurement outcome of

system C
d is represented by a linear operator Q on C

d satisfying
0 ≤Q ≤ I, where I is the identity. The probability of outcome Q on
state ψ 2 C

d is

PðQjψÞ ¼ hψjQjψi : ð1Þ
A (full) measurement is represented by the operators correspond-
ing to its outcomes Q1; :::;Qn, which must satisfy the normal-

ization condition
Pn
i¼1

Qi ¼ I.

The more traditional formulation of the measurement
postulate in terms of (not necessarily positive) Hermitian
operators is equivalent to the above. But we have chosen the
above form because it is closer to the formalism used in the
presentation of our results.

Postulate (post-measurement state-update). Each outcome is
represented by a completely-positive linear map Λ related to the
operator Q via

trΛðjψihψjÞ ¼ hψjQjψi ; ð2Þ
for all ψ. The post-measurement state after outcome Λ is

ρ ¼ ΛðjψihψjÞ
trΛðjψihψjÞ : ð3Þ

A (full) measurement is represented by the maps corresponding

to its outcomes Λ1, …, Λn whose sum
Pn
i¼1

Λi is trace-preserving.

If the measurement is repeatable and minimally disturbing33,34

then Q1; :::;Qn are projectors and the above maps are of the form
Λi(ρ)=QiρQi, which is the standard textbook “projection
postulate”. Below we prove that the “measurement” and “post-
measurement state-update” postulates are a consequence of the
first three postulates.

The structure of mixed states. Mixed states are not mentioned in
the standard postulates of QM, but their structure follows
straightaway from the measurement postulate (1). Recall that a
mixed state is an equivalence class of indistinguishable ensembles,
and an ensemble (ψr, pr) is a probability distribution over pure
states. Note that the notion of distinguishability depends on what
the measurements are. For the particular case of quantum mea-
surements (1), the probability of outcome Q when a source
prepares state ψr with probability pr is

PðQjðψr; prÞÞ ¼
X
r

prPðQjψrÞ ¼ trðQρÞ ; ð4Þ

where we define the density matrix

ρ ¼
X
r

prjψrihψrj : ð5Þ

This matrix contains all the statistical information of the
ensemble. Therefore, two ensembles with the same density matrix
are indistinguishable.

The important message from the above is that a different
measurement postulate would give different equivalence classes
of ensembles, and hence, a different set of mixed states. Thus, in
proving our main result, we will not assume that mixed states
are of the form (5). An example of mixed states for a non-
quantum measurement postulate is described in the section
“Non-quantum measurement postulate violating associativ-
ity”. A full classification of the sets of mixed states for non-
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quantum measurement postulates is given in Supplementary
Note 1.

Formalism for any alternative measurement postulate. Before
proving that the only possible measurement postulate is that of
QM, we have to articulate what “a measurement postulate” is in
general. In order to do so, we introduce a theory-independent
characterization of measurements for single and multipartite
systems. This is based on the concept of outcome probability
function (OPF), introduced in35 and defined next.

Definition (OPF). Each measurement outcome that can be
observed on system C

d is represented by the function f : PCd !
½0; 1� being its corresponding probability f ðψÞ ¼ Pðf jψÞ for each
pure state ψ 2 PCd ; and we denote by F d the complete set of
OPFs of system C

d . Completeness is defined below as the closure
of F d under various operations.

If instead of a single outcome we want to specify a full
measurement with, say, n outcomes, we provide the OPFs f1; :::; fn
corresponding to each outcome; which must satisfy the normal-
ization condition

Xn
i¼1

fiðψÞ ¼ 1 ; ð6Þ

for all states ψ.
It is important to note that this mathematical description of

measurements is independent of the underlying interpretation
of probability: all we are assuming is that there exist
experiments which yield definite outcomes (possibly relative
to a given agent who uses this formalism), and that it makes
sense to assign probabilities to these outcomes. For example, we
could interpret them as Bayesian probabilities of a physicist
who bets on future outcomes of experiments; or as limiting
frequencies of a large number of repetitions of the same
experiment, approximating empirical data. Whenever we have
an experiment of that kind, the corresponding probabilities
(whatever they mean) will be determined by a collection of
OPFs.

The completeness of the set of OPFs F d consists of the
following three properties:

Property 1 (F d is closed under taking mixtures): Suppose that
the random variable x with probability px determines which 2-
outcome measurement f x1 ; f

x
2 2 F d we implement, and later on

we forget the value of x. Then the probability of outcome 1 for
this “averaged” measurement isX

x

px f
x
1 2 F d ; ð7Þ

which must be a valid OPF. Therefore, mixtures of OPFs are
OPFs.

Property 2 (F d is closed under composition with unitaries): We
can always perform a transformation U∈U(d) before a
measurement f 2 F d , effectively implementing the measurement

f � U 2 F d ; ð8Þ

which then must be a valid OPF. Note that here we are not saying
that all unitaries can be physically implemented, but only that the
formalism must in principle include them.

Property 3 (F d is closed under systems composition): Since F d is
complete, it also includes the measurements that appear in the
description of Cd as part of the larger system C

d � C
b ffi C

db, for
any background system C

b. Formally, for each background state
φ 2 C

b and global OPF g 2 F db there is local OPF fφ;g 2 F d

which represents the same measurement outcome

fφ;gðψÞ ¼ gðψ � φÞ ; ð9Þ

ψ 2 PCd :

Next we consider local measurements in multipartite systems.
In order to do so, it is useful to recall that the observer always has
the option of describing a systems Ca as part of a larger system
C

a � C
b, without this affecting the predictions of the theory. In

order to do so, the observer needs to know how to represent the
OPFs of the small system F a as OPFs of the larger system F ab.
This information is contained in the star product, defined in what
follows.

Definition (⋆-product). Any pair of local OPFs, f 2 F a and
g 2 F b, is represented as a global OPF ðf ? gÞ 2 F ab via the star
product ? : F a ´F b ! F ab, which satisfies

ðf ? gÞðψ � φÞ ¼ f ðψÞgðφÞ ; ð10Þ
for all ψ 2 PCa and φ 2 PCb. This product must be defined for
any pair of (complex and separable) Hilbert spaces Ca and C

b.
In other words, the ⋆-product represents bi-local measure-

ments, which in QM are represented by the tensor product in the
space of Hermitian matrices.

Since the option of describing system C
a as part of a larger

system C
a � C

b is a subjective choice that must not affect the
predictions of the theory, the embedding of F a into F ab provided
by the ⋆-product must preserve the structure of F a. This includes
the mixing (convex) structure

X
x

pxf
x

 !
? g ¼

X
x

px f x ? gð Þ ; ð11Þ

as well as the U(d) action

f � Uð Þ ? g ¼ f ? gð Þ � ðU � IbÞ : ð12Þ
And likewise for the other party F b. The ⋆-product must also
preserve probability, in the sense that if ffig � F a and fgjg � F b

are full measurements satisfying the normalization condition (6)
then we must have

ð
X
i

fiÞ ? ð
X
j

giÞ
" #

ðψÞ ¼ 1 ; ð13Þ

for all rays ψ of Ca � C
b.

Pushing the same philosophy further, the observer has the
option of describing the tripartite system C

a � C
b � C

c as the
bipartite system C

a � ½Cb � C
c� or the bipartite system

½Ca � C
b� � C

c, without this affecting the probabilities predicted
by the theory. This translates to the ⋆-product being associative

f ? g ? hð Þ ¼ ðf ? gÞ ? h ð14Þ
That is, the probability of outcome f ? g ? h is independent of
how we choose to partition the global system into subsystems. As
we show below, this property will be crucial to recover the
standard measurement postulates of QM.

The measurement theorem. Before stating the main result of this
work, we specify what should be the content of any alternative
measurement postulate, and state an operationally-meaningful
assumption that is necessary to prove our theorem.

Definition (measurement postulate). This is a family of OPF sets
F 2;F 3;F 4; ¼ and F1 equipped with a ⋆-product F a ´F b !F ab satisfying conditions (7–14).

In addition to the above, a measurement postulate could
provide restrictions on which OPFs can be part of the same
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measurement (beyond the normalization condition). However,
such rules would not affect our results.

Assumption (possibility of state estimation). Each finite-
dimensional system C

d has a finite list of outcomes f 1; ¼ ; f k 2
F d such that knowing their value on any ensemble (ψr, pr) allows
us to determine the value of any other OPF g 2 F d on the
ensemble (ψr, pr).

It is important to emphasize that f 1; :::; f k need not be
outcomes of the same measurement; and also, this list need not be
unique. For example, in the case of QM, we can specify the state
of a spin-12 particle with the probabilities of outcome “up” in any
three linearly independent directions. Also in QM, we have k=
d2− 1; but here we are not assuming any particular relation
between d and k. Now it is time to state the main result of this
work, which essentially tells us that the only possible measure-
ment postulates are the quantum ones.

Theorem (measurement). The only measurement postulate
satisfying the “possibility of state estimation” has OPFs and
⋆-product of the form

f ðφÞ ¼ hφjFjφi ; ð15Þ

ðf ? gÞðψÞ ¼ hψjF � Gjψi ; ð16Þ
for all φ 2 C

a and ψ 2 C
a � C

b, where the Ca-operator F satisfies
0≤ F ≤ I, and analogously for G.

The methods section provides a summary of the ideas and
techniques used in the proof of this theorem. Full detail can be
found in Supplementary Note 3 and Supplementary Note 4.

The post-measurement state-update rule. At first sight, the
above theorem says nothing about the post-measurement state-
update rule. But actually, it is well-known36 that the only possible
state-update rule that is compatible with the probability rule
implied by the theorem (15–16) is the one stated above in pos-
tulate “post-measurement state-update rule”. We include a self-
contained proof of the above in Supplementary Note 5.

Non-quantum measurement postulate violating associativity.
In this section we present an example of alternative measurement
postulate, which shows that it is possible to bypass the mea-
surement theorem if we give up the associativity condition (14). It
also illustrates how a different choice of measurement postulate
produces a different set of mixed states.

Definition (non-quantum measurement postulate). An n-out-
come measurement on C

a is characterized by n Hermitian
operators Fi acting on C

a � C
a and satisfying 0 � Fi � Pa

þ andXn
i¼1

Fi ¼ Pa
þ ; ð17Þ

where Pa
þ is the projector onto the symmetric subspace of

C
a � C

a. The probability of outcome i on the (normalized) state
φ 2 C

a is given by

fiðφÞ ¼ tr Fijφihφj�2� �
; ð18Þ

and the ⋆-product of two OPFs f 2 F a and g 2 F b of the form
(18) is defined as

ðf ? gÞðψÞ ¼ tr F � Gþ trF
trPaþ

Pa
� � trG

trPbþ
Pb
�

� �
jψihψj�2

� �
;

for any normalized ψ 2 C
a � C

b.
This alternative theory violates the principles of “local

tomography”37 and “purification”38. This and other exotic
properties of this theory are analyzed in detail in previous
work35,39. Also, the validity of marginal and conditional states

imposes additional constraints on the matrices F which are also
worked out in39. It is easy to check that the above definition
satisfies conditions (7–13) and violates associativity (14). There-
fore, this provides a perfectly valid toy theory of systems that
encompass either one or two components, but not more.

As we have mentioned above, the structure of the mixed states
depends on the measurement postulate. Here, the mixed state
corresponding to ensemble (ψr, pr) is

ω ¼
X
r

prjψrihψrj�2 : ð19Þ

Another non-quantum property of this toy theory is that the
uniform ensembles corresponding to two different orthonormal
bases, {φi} and {ψi} are distinguishableX

i

1
d
jφiihφij�2≠

X
i

1
d
jψiihψij�2 : ð20Þ

Gleason’s theorem and non-contextuality. As mentioned in the
introduction, Gleason’s theorem and many other derivations of
the Born rule2–8,10,12 assume the structure of quantum mea-
surements; that is, the correspondence between measurements
and orthonormal bases {φi}, or more generally, positive-operator
valued measures16. But in addition to this, they assume that the
probability of an outcome φi does not depend on the measure-
ment (basis) it belongs to. Note that this type of “non-con-
textuality” is already part of the content of Born’s rule.

To show that this “non-contextuality” assumption is by no
means necessary, we review an alternative to the Born rule,
presented in ref. 40, which does not satisfy it. In this toy theory,
we also have that measurements are associated to orthonormal
bases {φi} and each outcome corresponds to an element φi of the
basis. Then, the probability of outcome φi on state ψ is given by

PðφijψÞ ¼
jhφijψij4P
j
jhφjjψij4

: ð21Þ

Since this example does not meet the premises of Gleason’s
theorem (the denominator depends not only on φi but also on the
rest of the basis), there is no contradiction in that it violates its
conclusion.

We stress that our results, unlike previous contributions2–
8,10,12, do not assume this type of non-contextuality. In particular,
our OPF framework perfectly accommodates the above example
(21) with fiðψÞ ¼ PðφijψÞ. This example however does not meet
the “possibility of state estimation” assumption, and hence is
excluded by the main theorem of this paper.

In the Supplementary Discussion we discuss publications13

and41 in relation to the theorem presented in this paper.

Discussion
It may seem that conditions (7–14) are a lot of assumptions to
claim that we derive the measurement postulates from the non-
measurement ones.

But from the operational point of view, these conditions con-
stitute the very definition of measurement, single and multi-
partite physical system. In other words, specifying what we mean
by “measurement” is in a different category than stating that
measurements are characterized by operators acting on a Hilbert
space. Analogously, the rules of probability calculus or the axioms
of the real numbers are not explicitly included in the postulates of
QM.

Note that our results also apply to indistinguishable particles
(bosons and fermions), as long as we interpret the tensor product
not as a composition of particles, but of the corresponding modes.
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It is rather remarkable that none of the three measurement
postulates (structure, probabilities and state-update) can be
modified without having to redesign the whole theory. In parti-
cular, the probability rule is deeply ingrained in the main struc-
tures of the theory. This fact shows that one need not appeal to
any supplementary principles beyond operational primitives to
derive the Born rule, nor do we need to make any assumptions
about the structure of measurements, unlike previous
work6,10,12,18,19,40. Finally, having cleared up unnecessary pos-
tulates in the formulation of QM, we find ourselves closer to its
core message.

Methods
This brief section provides a bird’s eye view of the proof of the measurement
theorem of Supplementary Note 3 and Supplementary Note 4. The argument starts
by embedding the OPF set F d into a complex vector space so that physical mix-
tures (7) can be represented by certain linear combinations. Second, the “possibility
of state estimation” assumption implies that, whenever d is finite, this embedding
vector space is finite-dimensional. This translates the U(d) action (8) on the set F d
to a linear representation; and once in the land of U(d) representations we have a
good map of the territory.

Third, the fact that the argument of the functions in F d is a ray (not a vector)
imposes a strong restriction to the above-mentioned U(d) representation. All these
restricted representations were classified by some of the authors in ref. 35. This
amounts to a classification of all alternatives to the measurement postulate for
single systems, that is, when the consistency constraints related to composite
systems (9–14) are ignored. The next steps take composition into account.

Fourth, “closedness under system composition” (9) implies that all OPFs f 2 F d
are of the form

f ðφÞ ¼ tr Fjφihφj�n� �
; ð22Þ

where n is a fixed positive integer, as shown in Supplementary Note 2. Recall that
the case n= 1 is QM and the case n= 2 has been studied above. In the final step,
the representation theory of the unitary group is exploited to prove that, whenever
n ≥ 2, it is impossible to define a star product of functions (22) satisfying asso-
ciativity (14). This implies that only the quantum case (n= 1) fulfils all the
required constraints (7–14).

Data availability
No data sets were generated or analyzed during the current study.
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