11 research outputs found

    Functional signals and covariation in triquetrum and hamate shape of extant primates using 3D geometric morphometrics

    Full text link
    In this study, we want to investigate the covariation in the shape of two carpal bones, the triquetrum and hamate, and the possible association with locomotor behavior in a broad range of primate taxa. We applied 3D Geometric Morphometrics on a large data set comprising 309 anthropoid primates of 12 different genera. Principal component analyses were performed on the covariance matrix of 18 (triquetrum) and 23 (hamate) Procrustes-aligned surface landmarks. A two-block partial least square analysis was done to test the covariance between triquetrum and hamate shape, without relying on the predictive models implicit in regression analyses. The results show that the carpal shape of quadrupedal anthropoids, which mainly use their wrist under compressive conditions, differs from that of suspensory primates as their wrist is possibly subjected to tensile and torsional forces. Within the hominids, differences in shape also distinguish more terrestrial from more arboreal species. Even within the great apes, we are able to capture shape differences between species of the same genus. In combination with behavioral and biomechanical studies, the results of this research can be used to establish form-function relationships of the primate hand which will aid the functional interpretation of primate fossil remains

    The insect nephrocyte is a podocyte-like cell with a filtration slit diaphragm.

    Get PDF
    The nephron is the basic structural and functional unit of the vertebrate kidney. It is composed of a glomerulus, the site of ultrafiltration, and a renal tubule, along which the filtrate is modified. Although widely regarded as a vertebrate adaptation, 'nephron-like' features can be found in the excretory systems of many invertebrates, raising the possibility that components of the vertebrate excretory system were inherited from their invertebrate ancestors. Here we show that the insect nephrocyte has remarkable anatomical, molecular and functional similarity to the glomerular podocyte, a cell in the vertebrate kidney that forms the main size-selective barrier as blood is ultrafiltered to make urine. In particular, both cell types possess a specialized filtration diaphragm, known as the slit diaphragm in podocytes or the nephrocyte diaphragm in nephrocytes. We find that fly (Drosophila melanogaster) orthologues of the major constituents of the slit diaphragm, including nephrin, NEPH1 (also known as KIRREL), CD2AP, ZO-1 (TJP1) and podocin, are expressed in the nephrocyte and form a complex of interacting proteins that closely mirrors the vertebrate slit diaphragm complex. Furthermore, we find that the nephrocyte diaphragm is completely lost in flies lacking the orthologues of nephrin or NEPH1-a phenotype resembling loss of the slit diaphragm in the absence of either nephrin (as in human congenital nephrotic syndrome of the Finnish type, NPHS1) or NEPH1. These changes markedly impair filtration function in the nephrocyte. The similarities we describe between invertebrate nephrocytes and vertebrate podocytes provide evidence suggesting that the two cell types are evolutionarily related, and establish the nephrocyte as a simple model in which to study podocyte biology and podocyte-associated diseases.This work was supported by Wellcome Trust grants awarded to H.S. (072441 and 079221, H.W., B.D., H.S.); Deutsche Forschungsgemeinschaft (SFB 590) awarded to Elisabeth Knust (F.G.), ARC 1242 (H.W., B.D., H.S., F.G.); MEC grant awarded to M.R-G. (BFU2007-62201, S.P-S., M.R-G.); Fundación Ramón Areces grant to the CBMSO (M.R-G.); EC grant LSHG-CT-2004-511978 to MYORES (M.R-G.); an FPU fellowship from the MEC awarded to A.G-L.Peer reviewe

    Determination of ploidy level and nuclear DNA content in blueberry by flow cytometry

    Full text link
    The technique of DNA flow cytometry was used to study variation in DNA content among different ploidy levels, as well as among diploid species, of Vaccinium section Cyanococcus . In a sample of plants of varying ploidy level, the relative fluorescence intensity (RFI) of nuclei stained with propidium iodide was a function of the number of chromosome sets (x), as represented by the linear equation RFI=3.7x-2.3 (r 2 =95%). The data indicated that DNA flow cytometry could be useful for the determination of ploidy level at the seedling stage in blueberry. They also suggest that “conventional polyploid evolution” has occurred in this section of the genus Vaccinium with an increase in nuclear DNA content concurrent with the increase in chromosome number. The nuclear DNA content of diploid species of Vaccinium section Cyanococcus was estimated from the relationship of the observed RFI to an internal known DNA standard (trout red blood cells). A nested analysis of variance indicated significant variation among species, as well as among populations within species, in nuclear DNA content, although this variation was small compared to the variation among ploidy levels. The variation in nuclear DNA content corresponded to the phylogenetic relationships among species determined from previous studies.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46013/1/122_2004_Article_BF00211053.pd
    corecore