23 research outputs found

    An Alternative Phase-Sensitive THz Imaging Technique for Art Conservation: History and New Developments at the ENEA Center of Frascati

    Get PDF
    In recent years, THz imaging techniques have been used in several fields of application. At the beginning of the century, the low availability of powerful THz sources was one of the limiting factors to the advancement of THz technology. At the ENEA center in Frascati, two Free Electron Lasers (FELs) operating in the THz spectral region were available at that time, making it possible to exploit all the features of THz imaging. In this paper, we will describe an alternative THz imaging technique, developed over 15 years of studies at the ENEA center of Frascati, and its application in the art conservation field, reporting the latest results of such studies on the optical properties of pigments in the GHz-THz region of the spectrum, on the possibility of detecting biological weeds under mosaic tiles and on the THz analysis of ancient leather wallpapers. This alternative technique was first developed in the framework of a bilateral collaboration between Japan and Italy, the THz-ARTE Project, which involved NICT (Tokyo), NNRICP (Nara), ENEA (Frascati) and IFAC-CNR (Florence). Most of the THz imaging techniques at that time were based on THz-Time Domain (THz-TD) devices. In the paper will be described how this alternative technique is able to measure the phase of the reflected radiation, thus providing information on the optical properties of the materials under study, such as mural paintings and mosaics. This makes it possible to detect the presence of hidden artworks, additional elements under paint layers, and dielectric materials. To describe the potential and the limits of this alternative imaging technique we will start from a description of the first THz imaging setup at the ENEA center of Frascati, based upon a THz Free Electron Laser. A description of the theoretical principle underlying this technique will be given. The first results in the field of art conservation are summarized, while the new results of a systematic study on the optical properties of pigments are reported and the realization of a portable THz imaging device, and its application "on site" for the analysis of frescoes are shown. The success of this prototype lead to the identification of different types of artworks as possible targets to be studied. New results about the ability of detecting water, and possibly the water content of biological weeds, under mosaic tiles are described, while new experimental measurements on Leather Wallpapers, both "in situ" and in a laboratory environment, are discussed later. A final analysis on the pro and the cons of this alternative imaging technique and on its possible utilization with the developed prototype is carried out together with the considerations on possible future developments and its potential use as an extension of other imaging techniques

    A robust and powerful green light photoemission source: The ferroelectric ceramics

    Get PDF
    The photoemission characteristics of ceramic disks of lead zirconate titanate lanthanum doped (PLZT), have been investigated. We observe 1 nC of extracted charge under an accelerating field of 20 kV/cm in poor vacuum conditions. The emission is clearly limited by space charge effects. The extrapolated quantum efficiency results in ≈10−6. The yield of a PLZT ceramic in the ferroelectric state and its slope versus light intensity have turned out higher than those of antiferroelectric ceramic. Samples in different experimental configurations have shown different nonlinear yields

    Extreme Ultraviolet (EUV) Sources for Lithography based on Synchrotron Radiation

    Get PDF
    The study presented here was initiated by a discussion to investigate the possibility of using synchrotron radiation as a source for the Next Generation Lithography (NGL) based on the EUV-concept (Extreme Ultra-Violet; here 13.5 nm or 11.3 nm radiation, respectively). The requirements are: 50 W, 2% bandwidth and minimal power outside this bandwidth. Three options were investigated. The first two deal with radiation from bending magnets and undulators. The results confirm the earlier work by Oxfords Instrument and others that these light-sources lack in-band power while emitting excessive out-of-band radiation. The third approach is a FEL (Free Electron Laser) driven by a 500 MeV linear accelerator with a superconducting mini-undulator as radiation emitting device. Such a device would produce in-band EUV-power in excess of 50 W with negligible out-of-band power.Comment: Submitted to Nuclear Instruments and Methods

    Conceptual Design of a Soft X‐ray SASE‐FEL Source

    Get PDF
    FELs based on SASE are believed to be powerful tools to explore the frontiers of basic sciences, from physics to chemistry to biology. Intense R&D programs have started in the USA and Europe in order to understand the SASE physics and to prove the feasibility of these sources. The allocation of considerable resources in the Italian National Research Plan (PNR) brought about the formation of a CNR‐ENEA‐INFN‐University of Roma "Tor Vergata" study group. A conceptual design study has been developed and possible schemes for linac sources have been investigated, bringing to the SPARX proposal. We report in this paper the results of a preliminary start to end simulation concerning one option we are considering based on an S‐band normal conducting linac with high brightness photoinjector integrated in a RF compressor

    Novel Schemes for Compact FELs in the THz Region

    No full text
    The rapid advance of terahertz technologies in terms of radiation generators, systems, and scientific or industrial applications has put a particular focus on compact sources with challenging performances in terms of generated power (peak and/or average), radiation time structure, and frequency band tunability. Free electron laser (FEL)-based sources are probably the best candidates to express such a versatility; there are a number of schemes that have been investigated over the years to generate coherent radiation from free electrons in the mm-wave and terahertz regions of the spectrum, covering a wide frequency range from approximately 100 GHz to 10 THz. This paper proposes novel schemes for exploring the limits in the performance of radio frequency-driven free-electron devices in terms of ultrashort pulse duration, wide bandwidth operation, and energy recovery for near continuous wave (CW) operation. The aim of the present work is to demonstrate the feasibility of an FEL achieving performance comparable to a conventional photoconductive THz source, which is commonly used for time-domain spectroscopy (TDS), in terms of bandwidth and pulse duration. We will also demonstrate that a THz FEL could be very powerful and flexible in terms of tailoring its spectral features

    Design, Realization, and Test of Ultraviolet-C LED Arrays Suitable for Long-Lasting Irradiation of Biological Samples

    No full text
    We present the electrical and optical design, assembling, and thorough experimental characterization of two compact arrays of short-wavelength ultraviolet (UV-C) light-emitting diodes (LEDs) suitable for near-field irradiation. Through a combination of technical expedients, we have achieved effective thermal management such that long-lasting irradiations are possible without appreciable deterioration of UV-C emission. We successfully used these compact UV-C LED arrays for long lasting irradiation tests aimed at generating the biosynthesis of defensive metabolites that enhance the resistance of plants and fruits to pathogen attacks. Finally, we comment on the possibility of implementing these compact UV-C sources on robotic systems to make an automated device suitable to reduce pesticide use in agricultural crops

    Studies of leaf water content in smart agriculture using THz technologies: a review

    No full text
    In recent years, the concept of smart agriculture has entered our collective daily routine by radically modifying the methods by which crop monitoring was previously carried out. More precisely, the term smart farming focuses its attention on the use technologies already present on the market like, sensors (multispectral, hyperspectral, thermal and terahertz sensors), WNS (wireless sensor network) and drones capable to reduce the human work in the fields, optimizing at the same time the quantity and quality of the products limiting the use of resources, as water, fertilizers, pesticides and herbicides. Recently, one of the most important problem in the field of precision farming is the availability of water; unfortunately, this factor becomes more critical from year to year. To resolve this problem, the first step is to reduce consumption and rationalize the use of water by adjusting the water supply to the needs of the systems in order to increase its yield while saving money. In this respect, the development of non-destructive techniques operating in the THz spectral region has allowed to monitor in real time the water content present in leaves and plants. In fact, due to the strong water absorption and reflection in this spectral region, this feature can be exploited to detect the water content of leaves and plants helping us to intervene promptly in cases where the plant needs water, avoiding so does water stress, but above all trying to use our primary resource adequately by reducing waste. About this, Imaging and Time-Domain Spectroscopy (THz-TDS) techniques have been applied to monitor soil conditions, drought stress and presence of pathogens on the plants. In this review, we focus our attention on the latest research carried out on monitoring the water content present in leaves through THz technologies. Moreover, we pose particular attention in the description of our system set composed by a 97 GHz transmitter-receiver able to analyze the spatial distribution of the water inside a leaf

    Studies of leaf water content in smart agriculture using THz technologies: a review

    No full text
    In recent years, the concept of smart agriculture has entered our collective daily routine by radically modifying the methods by which crop monitoring was previously carried out. More precisely, the term smart farming focuses its attention on the use technologies already present on the market like, sensors (multispectral, hyperspectral, thermal and terahertz sensors), WNS (wireless sensor network) and drones capable to reduce the human work in the fields, optimizing at the same time the quantity and quality of the products limiting the use of resources, as water, fertilizers, pesticides and herbicides. Recently, one of the most important problem in the field of precision farming is the availability of water; unfortunately, this factor becomes more critical from year to year. To resolve this problem, the first step is to reduce consumption and rationalize the use of water by adjusting the water supply to the needs of the systems in order to increase its yield while saving money. In this respect, the development of non-destructive techniques operating in the THz spectral region has allowed to monitor in real time the water content present in leaves and plants. In fact, due to the strong water absorption and reflection in this spectral region, this feature can be exploited to detect the water content of leaves and plants helping us to intervene promptly in cases where the plant needs water, avoiding so does water stress, but above all trying to use our primary resource adequately by reducing waste. About this, Imaging and Time-Domain Spectroscopy (THz-TDS) techniques have been applied to monitor soil conditions, drought stress and presence of pathogens on the plants. In this review, we focus our attention on the latest research carried out on monitoring the water content present in leaves through THz technologies. Moreover, we pose particular attention in the description of our system set composed by a 97 GHz transmitter-receiver able to analyze the spatial distribution of the water inside a leaf

    An Alternative Phase-Sensitive THz Imaging Technique for Art Conservation: History and New Developments at the ENEA Center of Frascati

    No full text
    In recent years, THz imaging techniques have been used in several fields of application. At the beginning of the century, the low availability of powerful THz sources was one of the limiting factors to the advancement of THz technology. At the ENEA center in Frascati, two Free Electron Lasers (FELs) operating in the THz spectral region were available at that time, making it possible to exploit all the features of THz imaging. In this paper, we will describe an alternative THz imaging technique, developed over 15 years of studies at the ENEA center of Frascati, and its application in the art conservation field, reporting the latest results of such studies on the optical properties of pigments in the GHz-THz region of the spectrum, on the possibility of detecting biological weeds under mosaic tiles and on the THz analysis of ancient leather wallpapers. This alternative technique was first developed in the framework of a bilateral collaboration between Japan and Italy, the THz-ARTE Project, which involved NICT (Tokyo), NNRICP (Nara), ENEA (Frascati) and IFAC-CNR (Florence). Most of the THz imaging techniques at that time were based on THz-Time Domain (THz-TD) devices. In the paper will be described how this alternative technique is able to measure the phase of the reflected radiation, thus providing information on the optical properties of the materials under study, such as mural paintings and mosaics. This makes it possible to detect the presence of hidden artworks, additional elements under paint layers, and dielectric materials. To describe the potential and the limits of this alternative imaging technique we will start from a description of the first THz imaging setup at the ENEA center of Frascati, based upon a THz Free Electron Laser. A description of the theoretical principle underlying this technique will be given. The first results in the field of art conservation are summarized, while the new results of a systematic study on the optical properties of pigments are reported and the realization of a portable THz imaging device, and its application “on site” for the analysis of frescoes are shown. The success of this prototype lead to the identification of different types of artworks as possible targets to be studied. New results about the ability of detecting water, and possibly the water content of biological weeds, under mosaic tiles are described, while new experimental measurements on Leather Wallpapers, both “in situ” and in a laboratory environment, are discussed later. A final analysis on the pro and the cons of this alternative imaging technique and on its possible utilization with the developed prototype is carried out together with the considerations on possible future developments and its potential use as an extension of other imaging techniques
    corecore