167 research outputs found

    Numerical modelling of wave fields and currents in coastal area

    Get PDF
    The design and management of coastal engineering, like harbors and coastal defense structures, requires the simulation of hydrodynamic phenomena. This special issue collects five original papers that address state of the art numerical simulations of wave fields and wave-induced velocity fields in coastal areas. The first paper proposes a turbulence model for wave breaking simulation, which is expressed in terms of turbulent kinetic energy and dissipation rate of turbulent kinetic energy (k-e); the proposed turbulence model is a modification of the standard k-e turbulence models. The second paper investigates modalities by which wind interacts with wave motion, modifying the wave propagation dynamic. The third paper proposes a study on waves overtopping over coastal barriers. The fourth paper details the numerical simulation of a tsunami wave that propagates over an artificial reservoir, caused by a landslide that creates a solid mass to detach from the slopes and to slide into the reservoir. The fifth paper examines an application case concerning Cetraro harbor (Italy), which is carried out using three-dimensional numerical simulations of wave motion

    Hydrodynamic effects produced by submerged breakwaters in a coastal area with a curvilinear shoreline

    Get PDF
    A three-dimensional numerical study of the hydrodynamic effect produced by a system of submerged breakwaters in a coastal area with a curvilinear shoreline is proposed. The three-dimensional model is based on an integral contravariant formulation of the Navier-Stokes equations in a time-dependent curvilinear coordinate system. The integral form of the contravariant Navier-Stokes equations is numerically integrated by a finite-volume shock-capturing scheme which uses Monotonic Upwind Scheme for Conservation Laws Total Variation Diminishing (MUSCL-TVD) reconstructions and an Harten Lax van Leer Riemann solver (HLL Riemann solver). The numerical model is used to verify whether the presence of a submerged coastal defence structure, in the coastal area with a curvilinear shoreline, is able to modify the wave induced circulation pattern and the hydrodynamic conditions from erosive to accretive

    Numerical study over the eects of a designed submerged breakwater on the coastal sediment transport in the Pescara Harbour (Italy)

    Get PDF
    In 1997, in front of the Pescara Harbour (Italy), a detached breakwater was constructed. In the successive years, the sediment transport due to the combined action of waves and coastal currents, in the area between the detached breakwater and the entrance of the Pescara Harbour, produced an accumulation of about 40,000 m3 of sediment per year. In this paper, the causes of the accretion of the bottom elevation in front of the Pescara Harbour entrance and the eects produced by the existing detached breakwater are investigated. The eects on the sediment transport of the introduction of a new submerged breakwater designed to protect the entrance of the harbour from sediment siltation are investigated. In particular, the ability of the designed submerged breakwater, located orthogonally to the longshore current, to intercept the aforementioned solid material and to significantly reduce the accretion of the bottom in the area in front of the harbour entrance, was numerically verified. Numerical simulations were carried out by means of a model of the bottom-change composed of two sub-models: a two-dimensional phase resolving model that is used to calculate the fluid dynamic variables changing inside the wave period and a second sediment transport sub-model to simulate the bottom changes, in which the suspended sediment concentration is calculated by the wave-averaged advection-diusion equation. The equations of motion, in which the vector and tensor quantities are expressed in Cartesian components, are written in a generalised curvilinear coordinate system. The fully nonlinear Boussinesq equations are written in an integral form and used to simulate the velocity fields

    Water waves overtopping over barriers

    Get PDF
    A numerical and experimental analysis of the wave overtopping over emerged and submerged structures, is presented. An original model is used in order to simulate three-dimensional free surface flows. The model is based on the numerical solution of the motion equations expressed in an integral form in time-dependent curvilinear coordinates. A non-intrusive and continuous-in-space image analysis technique, which is able to properly identify the free surface even in very shallow waters or breaking waves, is adopted for the experimental tests. Numerical and experimental results are compared, for several wave and water depth conditions

    Numerical simulation of 3D free surface flows in time dependent curvilinear coordinates

    Get PDF
    We propose a three dimensional non-hydrostatic shock-capturing numerical model for the simulation of wave propagation, transformation and breaking, which is based on an original integral formulation of the contravariant Navier-Stokes equations, devoid of Christoffel symbols, in general time-dependent curvilinear coordinates

    Experimental Observation of Energy Modulation in Electron Beams Passing Through Terahertz Dielectric Wakefield Structures

    Full text link
    We report observation of a strong wakefield induced energy modulation in an energy-chirped electron bunch passing through a dielectric-lined waveguide. This modulation can be effectively converted into a spatial modulation forming micro-bunches with a periodicity of 0.5 - 1 picosecond, hence capable of driving coherent THz radiation. The experimental results agree well with theoretical predictions.Comment: v3. Reviewers' suggestions incorporated. Accepted by PR

    Determination of longitudinal bunch shape by means of coherent Smith-Purcell radiation

    Get PDF
    Coherent enhancement of the Smith-Purcell radiation produced from the interaction of a 1.8 MeV electron beam with a grating has been observed. The emitted radiation has been measured at angles in the 40° to 120° range, which correspond to wavelengths from 0.65 to 4 mm, approximately. The radiated power was 320 mW at 90°. Its angular distribution agrees well with the description of the process in terms of induced surface currents and has been used to infer the longitudinal profile of the electron bunch. It is concluded that the bunch has an approximately triangular profile, with 85% of the bunch particles contained within 14 ps. The possibilities of the technique as a bunch-shape diagnostic tool are also discussed. © 2002 The American Physical Society

    Determination of longitudinal bunch shape by means of coherent Smith-Purcell radiation

    Get PDF
    Coherent enhancement of the Smith-Purcell radiation produced from the interaction of a 1.8 MeV electron beam with a grating has been observed. The emitted radiation has been measured at angles in the 40° to 120° range, which correspond to wavelengths from 0.65 to 4 mm, approximately. The radiated power was 320 mW at 90°. Its angular distribution agrees well with the description of the process in terms of induced surface currents and has been used to infer the longitudinal profile of the electron bunch. It is concluded that the bunch has an approximately triangular profile, with 85% of the bunch particles contained within 14 ps. The possibilities of the technique as a bunch-shape diagnostic tool are also discussed

    IL-18 receptor marks functional CD8+ T cells in non-small cell lung cancer

    Get PDF
    IL-18 is an inflammasome-related cytokine, member of the IL-1 family, produced by a wide range of cells in response to signals by several pathogen-or damage-associated molecular patterns. It can be highly represented in tumor patients, but its relevance in human cancer development is not clear. In this study, we provide evidence that IL-18 is principally expressed in tumor cells and, in concert with other conventional Th1 cell-driven cytokines, has a pivotal role in establishing a pro-inflammatory milieu in the tumor microenvironment of human non-small cell lung cancer (NSCLC). Interestingly, the analysis of tumor-infiltrating CD8(+) T cell populations showed that (i) the relative IL-18 receptor (IL-18R) is significantly more expressed by the minority of cells with a functional phenotype (T-bet(+)Eomes(+)), than by the majority of those with the dysfunctional phenotype T-bet(+)Eomes(+) generally resident within tumors; (ii) as a consequence, the former are significantly more responsive than the latter to IL-18 stimulus in terms of IFN gamma production ex vivo; (iii) PD-1 expression does not discriminate these two populations. These data indicate that IL-18R may represent a biomarker of the minority of functional tumor-infiltrating CD8(+) T cells in adenocarcinoma NSCLC patients. In addition, our results lead to envisage the possible therapeutic usage of IL-18 in NSCLC, even in combination with other checkpoint inhibitor approaches

    Design of a plasma discharge circuit for particle wakefield acceleration

    Get PDF
    Plasma wakefield acceleration is the most promising acceleration technique known nowadays, able to provide very high accelerating fields (10–100 GV m 1), enabling acceleration of electrons to GeV energy in few centimetres. However, the quality of the electron bunches accelerated with this technique is still not comparable with that of conventional accelerators; radiofrequency-based accelerators, in fact, are limited in the accelerating field (10–100 MV m 1) requiring therefore kilometric distances to reach the GeV energies, but can provide very bright electron bunches. Combining high brightness electron bunches from conventional accelerators and high accelerating fields reachable with plasmas could be a good compromise allowing to further accelerate high brightness electron bunches coming from LINAC while preserving electron beam quality. Following the idea of plasma wave resonant excitation driven by a train of short bunches, we have started to study the requirements in terms of plasma for SPARC-LAB [1,2]. In particular, here we focus on the ionization process; we show a simplified model to study the evolution of plasma induced by discharge, very useful to design the discharge circuit able to fully ionize the gas and bring the plasma at the needed temperature and density
    • …
    corecore