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Abstract: - A numerical and experimental analysis of the wave overtopping over emerged and submerged 

structures, is presented. An original model is used in order to simulate three-dimensional free surface flows. 

The model is based on the numerical solution of the motion equations expressed in an integral form in time-

dependent curvilinear coordinates. A non-intrusive and continuous-in-space image analysis technique, which is 

able to properly identify the free surface even in very shallow waters or breaking waves, is adopted for the 

experimental tests. Numerical and experimental results are compared, for several wave and water depth 

conditions. 
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1 Introduction 
The design of seawalls, breakwaters, sea dikes and, 

more generally, coastal structures, requires 

prediction of the wave overtopping over barriers [1].  

In this work, a numerical and experimental study 

to investigate water waves overtopping over a 

structure is presented. Numerical models that are 

able to simulate the wave overtopping over a 

structure, have to incorporate the representations of 

wave transformation from deep to shallow water, 

wave breaking over variable bathymetry and wave 

run up on the structure. Models that solve depth-

averaged equations, such as Nonlinear Shallow 

Water Equations (e.g. [2] and [3]) and Boussinesq 

Equations (e.g. [4], [5] and [6]), are widely used in 

this context [7]. Boussinesq Equations, which 

incorporate nonlinear and dispersive properties, are 

able to simulate both wave propagation and wave 

breaking (thanks to the shock-capturing property), 

but are not able to give a prediction of vertical 

distribution of variables, that is an essential property 

in order to represent phenomena present in the 

context of wave-coastal structure interactions, as 

undertow currents. 

Another drawback of the models based on 

Boussinesq Equations is that they are not parameter 

free. In fact, in the shallow water zones, to properly 

simulate wave breaking, one has to switch from 

Boussinesq Equations to Nonlinear Shallow Water 

Equations, turning off dispersive terms; a criterion 

to define the zone in which there is the switch from 

one set of equations to the other, has to be defined. 

In the context of domains with complex 

geometries, in order to overcome the limitations 

related to the use of Cartesian grids, numerical 

simulations can be carried out by using unstructured 

grids (e. g. [8], [9] and [10]) or boundary 

conforming grids. In this latter regard, many recent 

3D models (e.g. [11] and [12]), map a time-varying 

physical domain into a fixed rectangular prismatic 

shape computational grid (the so-called  -

coordinate transformation). In these models, the 

kinematic and zero-pressure conditions at the free 

surface are assigned precisely, given the fact that the 

free surface position is at the upper computational 

boundary [13]. 

Models proposed by [13] and [14] simulate 

directly wave breaking, by incorporating into the  -

coordinates methodology shock-capturing methods. 

These models overcome the main drawback of the 

models that solve the Boussinesq Equations. In fact, 

in the  -coordinates shock capturing models, no 

criterion has to be chosen to simulate the wave 

breaking phenomenon. In these models ([13], [14]), 
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the conserved variables are defined in a Cartesian 

system of reference and motion equations are solved 

on a coordinate system that includes a time-varying 

vertical coordinate. 

In this work, we propose a new shock-capturing 

numerical model for the simulation of overtopping. 

In this model, the motions equations are expressed 

in an integral formulation on a boundary 

conforming time moving grid. The proposed 

formulation represents a generalization of the 

conservative formulation of the Navier-Stokes 

equations expressed in  -coordinates.  

In order to validate the numerical model, some 

laboratory experiments (with the same wave and 

obstacle parameters) have been carried out. The 

free-surface has been measured by means of the 

non-intrusive and continuous-in-space image 

analysis technique developed and tested by [15]. 

This technique is able to properly identify the wave 

free surface even in prohibitive situations for 

traditional resistive probes, such as very shallow 

waters and/or breaking waves. 

The paper is structured as follows: in Chapter 2, 

we describe the proposed numerical model; in 

Chapter 3, we describe the experimental set-up; in 

Chapter 4, we present the results of a validation test 

for the numerical model and we compare numerical 

and experimental results for several overtopping 

tests; in Chapter 5, we present the conclusions of the 

study. 

 

 

2 Numerical model 
Let              be a system of curvilinear 

coordinates, the transformation from Cartesian 

coordinates            to the generalized 

curvilinear coordinates            is: 

 

                                        
 

                  
(1) 

 

Let  ⃗    ⃗     be the covariant base vectors 

and  ⃗        ⃗ the contravariant base vectors. 

The metric tensor and its inverse are defined by 

     ⃗   ⃗  and      ⃗   ⃗ , with      
      . The Jacobian of the transformation is given 

by √  √        .  

Let       be a volume element defined by 

surface elements bounded by curves lying on the 

coordinate lines. We define the volume element in 

the physical space as: 

                √           (2) 

 

and the volume element in the transformed space as: 

 

              (3) 

 

Is to be noted that the volume element defined in 

eqn. (2) is time dependent, while the one defined in 

eqn. (3) is not. Similarly, we define the surface 

element which bounds   , in the physical space as 

             √        and in the 

transformed space as            (          

are cyclic). 

Let the total water depth be            
                     , where   is the still water 

depth and   is the free surface elevation. Let 

           be the Cartesian components of the fluid 

velocity vector  ⃗⃗, and            be the Cartesian 

components of the velocity vector of the control 

volume surfaces,  ⃗. Our goal is to accurately 

represent the bottom and surface geometry and 

correctly assign the pressure and kinematics 

conditions at the bottom and at the free surface. A 

particular transformation from Cartesian to 

curvilinear coordinates, in which coordinates vary in 

time in order to follow the free surface movements, 

is: 

 

                         
    

 
         (4) 

 

By means of the coordinate transformation 

defined by (4), the time-varying coordinates of the 

physical domain are basically mapped into a fixed 

coordinate system           , where    spans from 

  to  . In addition, the Jacobian of the 

transformation becomes √   . It has to be noted 

that, by means of the transformation defined by (4), 

the only non-zero component of the vector  ⃗ is 

        ⁄ . 

We define the cell averaged value (in the 

transformed space), respectively of the conservative 

variable     and of the primitive variable   

(recalling that   does not depend on   ): 

 

   
̅̅ ̅̅ ̅  

 

   
∫      

    

   
    (5) 

 

 ̅  
 

      
 ∫        

  
    
 

 (6) 
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where       
         is the horizontal surface 

element in the transformed space.  

By using eqn. (5), the integral form of the 

momentum equation over the volume   , expressed 

in the time dependent coordinate system defined in 

(4), can be written as follows (see [13]): 

 

    
̅̅ ̅̅ ̅

  
  

 

   
∑
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(7) 

 

where       and       indicate the boundary 

surfaces of the volume element     on which    is 

constant and which are located at the larger and the 

smaller value of   , respectively. Here the index 

    and   are cyclic. In eqn. (7)   is the constant of 

gravity,   is the fluid density,   is the dynamic 

pressure,   is the kinematic viscosity and     is the 

strain rate tensor. 

By using eqn. (6), the integral form of the 

continuity equation over the water column, 

expressed in the time dependent coordinate system 

defined in (4), can be written as follows (see [13]): 

 

  ̅
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  ]      

     
 

 ∫ [         
  ]      

     
}    

(8) 

 

We assign the bottom and surface kinematic 

conditions as follows: 

∫ [           
  ]      

  
    (    )
 

   (9) 

 

∫ [           
  ]      

  
    (    )
 

   (10) 

 

By using conditions (9) and (10) into eqn. (8), 

we obtain 

 

  ̅

  
 

 

      
 ∫ ∑ [∫      

 

    

 

   

 

 

 

 ∫      
 

    
]       

(11) 

 

in which     and     indicate the boundary lines of 

the surface element     on which    is constant 

and which are located at the larger and the smaller 

value of    respectively. Eqn. (11) represents the 

governing equation that predicts the free surface 

motion.  

Eqns. (7) and (11) represent the expression of the 

three dimensional motion equations as a function of 

the    
̅̅ ̅̅ ̅ and  ̅ variables in the coordinate system 

            . Eqns. (7) and (11) are numerically 

solved by means of a shock-capturing scheme that 

uses an approximate HLL Riemann solver. The 

solution is advanced in time by using a three-stage 

strong stability preserving Runge-Kutta (SSPRK) 

fractional step method. To take into account the 

effects of turbulence, we introduce a turbulent 

kinematic viscosity, estimated by means of the 

Smagorinsky sub grid model. Further details on the 

numerical scheme can be found in [13]. 

 

 

3 Experimental set-up 
We carried out several laboratory tests, in a         

long,        wide flume, with glass walls, a piston-

type wave-maker and an absorbing beach to 

minimize the reflections. The adopted wave-maker 

is able to produce monochromatic regular wave 

trains. The wave period and the amplitude can be 

precisely assigned. More details can be found in 

[15]. 

A black painted trapezoidal obstacle of Perspex 

was used as bottom barrier. We employed still water 

depths (      ,        and       ): in the first 

experiment, the barrier is submerged, in the other 

two it is emerged. We seeded the water with a 

fluorescent dye, and we used a light sheet to 

illuminate the investigation area. We recorded the 
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images of the experiments by means of a digital 

video camera located orthogonally with respect to 

the investigation area: by means of this technique, 

the water appears bright in the recorded images, 

while the background and the barrier appear black. 

We carried out several experiment with different 

combinations of wave periods (       and       ), 

wave heights (       ,         and        ) and 

still water levels.  

We developed an image analysis technique in 

order to identify the free surface. By means of the 

developed technique, we overtake the drawbacks 

related to traditional probes, that are not able to 

properly work with very shallow water or breaking 

waves. Compared to traditional probes, the image 

analysis techniques have many advantages, as they 

are non-intrusive and quasi-continuous in space. For 

this reason, these techniques are used to measure, 

among the others, physical quantities such as object 

positions, pollutant concentrations [16] and/or flow 

velocities [17].  

In the proposed procedure, the recorded images 

are smoothed by means of a median filter, and are 

binarized; the interface between bright and dark 

zones identifies the free surface. A pixel by pixel 

analysis of each column in the images is carried out, 

by means of the following procedure:  

1. when a dark/bright interface is found, a 

certain number of successive pixels is 

checked; 

2. if all the checked pixels are bright, the first 

of them is identified as belonging to the free 

surface; otherwise, the bright pixels are 

considered as a noise and the search for the 

free surface pixel continues; 

3. when the free surface position is found at 

every column, we perform another median 

filter in order to smooth the line 

representing the free surface.  

By this way, the free surface is identified even 

when the obstacle is emerged or in presence of 

breaking waves.  

 

 

4 Results and discussion 
 

 

4.1 Rip current test 
In order to validate the proposed numerical model, 

we reproduce the laboratory experiment carried out 

by [18]. This test aims to verify the ability of the 

proposed model to reproduce nearshore currents 

induced by wave trains propagating over a spatially 

varying bottom. 

 
Fig. 1. Rip current test. Still water depth [m]. 

 

 
Fig. 2. Rip current test. Instantaneous free surface 

elevation 3D view.  

 

The experimental set-up of the test carried out by 

[18] has the following features: a 30x30m basin, a 

plane sloping beach of 1:30 with a channel located 

along the centerline. Given that the bathymetry is 

symmetric with respect to the channel axis, the 

computational domain adopted for the numerical 

simulations reproduces only a half of the 

experimental domain (see fig 1). Reflective 

boundary conditions are imposed at the boundary 

that coincides with the channel axis. In Fig. 1 the 

two dashed lines indicate two significant cross 

sections: the vertical section along the channel axis 

(a) and the vertical section at the plane beach (b).  

In this subsection, we show the results obtained 

by simulating a wave train generated in deep water 

(     ) whose features are: wave period 

        , wave height        . 

In Fig. 2 a three-dimensional view of the 

instantaneous wave field obtained by the proposed 

numerical model, is shown. Is to be noted that the 

wave shoaling and breaking occur nearer to the 
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beach in correspondence of the channel, due to the 

non-uniformity of the bottom. 

Figs. 3 and 4 show the wave heights evolution 

along the sections (a) and (b), respectively. The 

good agreement between numerical and 

experimental results indicates that the model is able 

to reproduce the differences, in the shoaling and 

wave breaking phenomena, between the channel 

section (a) and the plane beach section (b).  

The higher wave height in the channel is caused 

by an offshore directed current (rip current), 

opposite to the incoming waves. Fig. 5 shows the 

time-averaged flow velocity vectors near the 

bottom, obtained by the numerical simulation. As 

shown in Fig. 5, the rip current is generated by a 

longshore current, coming from the plane beach surf 

zone and turning offshore at the channel.  

 

 
Fig. 3. Rip current test. Section (a). Solid line: mean 

wave height obtained by the proposed numerical model. 

Circles: experimental data from [18] for significant wave 

height    ⁄ . 

 

 
Fig. 4. Rip current test. Section (b). Solid line: mean 

wave height obtained by the proposed numerical model. 

Circles: experimental data from [18] for significant wave 

height    ⁄ . 

 

 
Fig. 5. Rip current test. Time-averaged flow velocity field 

near the bottom (one out of every 8 vectors). 

 

 

4.2 Overtopping tests 
To predict the behaviour of wave trains interacting 

with barrier in different configuration, three 

experimental tests have been carried out. 

 

Test Still water 

depth [m] 

Wave 

height [cm] 

Wave 

period [s] 

1 0.23 3.5 1.55 

2 0.26 1 1.55 

3 0.29 2.5 0.95 

 

For results analysis, phase-averaged free surface 

elevation is computed. In order to reproduce the 

experiments, we carried out several numerical tests 

with the proposed model.  

 

4.2.1 Test 1  

In Fig. 6 the comparison between numerical and 

experimental results for test 1, is shown. Is to be 

noted that the wave is partially able to pass over the 

barrier. Fig. 6a shows the wave in the run-up phase; 

the run-up phenomenon is reproduced with a good 

agreement between numerical and experimental 

results. In Figs. 6b and 6c, the wave propagation 

over the crest of the barrier is shown: the good 

agreement between numerical predictions and 

experimental measurements proves that the wave 

front propagation over flat bottoms is well predicted 

by the proposed numerical model. From Fig. 6d it 

can be deduced that even the simulated wave run-

down is in agreement with the measured one. In Fig. 

6e the wave trough at the offshore side of the barrier 

is shown, while Fig. 6f shows the beginning of the 

run-up phase: it must be noted that in these figures, 

there are some disturbances in the experimental 

measurements, at the onshore side of the barrier. 
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Fig. 6. Test 1. Phase-averaged free surface elevation [m] 

at t/T=0.0 (a), t/T=0.167 (b), t/T=0.333 (c), t/T=0.5 (d), 

t/T=0.667 (e), t/T=0.833 (f). Circles: experimental 

results. Blue line: numerical results. 

4.2.2 Test 2  

In Fig. 7 the comparison between numerical and 

experimental results for test 2, is shown. In this 

case, the wave propagates over the crest of the 

barrier with a very small water depth. Fig. 7a shows 

the wave run up over the offshore side of the barrier; 

as in the test 1, it can be seen that the run-up is well 

predicted and that the numerical results have a good 

agreement with the measurements. In Figs. 7b and 

7c the wave propagating over the crest of the 

structure is shown; numerical and experimental 

results have a good agreement. Fig. 7d displays the 

wave that propagates over the inshore side of the 

barrier crest; is to be noted that in the experimental 

results the offshore side of the crest is shown dry. 

Figs. 7e and 7f show the run-down over the offshore 

side of the barrier; numerical and experimental 

results both well predict the phenomenon. 
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Fig. 7. Test 2. Phase-averaged free surface elevation [m] 

at t/T=0.0 (a), t/T=0.167 (b), t/T=0.333 (c), t/T=0.5 (d), 

t/T=0.667 (e), t/T=0.833 (f). Circles: experimental 

results. Blue line: numerical results. 

 

4.2.3 Test 3  

In Fig. 8 the comparison between numerical and 

experimental results for test 3, is shown. In this test, 

the barrier is completely submerged. In Figs. 8a and 

8b, the wave crest propagating over the offshore 

side of the barrier is shown; there is a good 

agreement between numerical and experimental 

results. Figs. 8c and 8d show that the wave front 

propagation over the structure is well reproduced; 

the measured free surface is slightly higher than in 

the computed one. Figs. 8e and 8f display the wave 

crest passing the barrier; it must be noted that the 

wave front celerity is slightly higher in the 

numerical results than in the experimental ones. 

 

 

 
Fig. 8. Test 3. Phase-averaged free surface elevation [m] 

at t/T=0.0 (a), t/T=0.167 (b), t/T=0.333 (c), t/T=0.5 (d), 

t/T=0.667 (e), t/T=0.833 (f). Circles: experimental 

results. Blue line: numerical results. 
 

 

4 Conclusion 
A numerical and experimental analysis of the wave 

overtopping over structures phenomenon, has been 

presented. A new numerical model for the 

simulation of three-surface flows over barriers has 

been proposed. The proposed numerical model 

relies on an integral form of motion equations on a 

time-varying coordinate system. Several laboratory 

tests have been carried out, by adopting a non-

intrusive and continuous-in-space image analysis 

technique.  

Numerical and experimental results have been 

compared, for different wave and water depth 

conditions. From this comparison it can be seen that 

the proposed model is able to reproduce the features 
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of the phenomenon of the water waves overtopping 

over barriers.  
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