88 research outputs found

    Early Markers of Glycaemic Control in Children with Type 1 Diabetes Mellitus

    Get PDF
    Background: Type 1 diabetes mellitus (T1DM) may lead to severe long-term health consequences. In a longitudinal study, we aimed to identify factors present at diagnosis and 6 months later that were associated with glycosylated haemoglobin (HbA 1c) levels at 24 months after T1DM diagnosis, so that diabetic children at risk of poor glycaemic control may be identified. Methods: 229 children,15 years of age diagnosed with T1DM in the Auckland region were studied. Data collected at diagnosis were: age, sex, weight, height, ethnicity, family living arrangement, socio-economic status (SES), T1DM antibody titre, venous pH and bicarbonate. At 6 and 24 months after diagnosis we collected data on weight, height, HbA 1c level, and insulin dose. Results: Factors at diagnosis that were associated with higher HbA1c levels at 6 months: female sex (p,0.05), lower SES (p,0.01), non-European ethnicity (p,0.01) and younger age (p,0.05). At 24 months, higher HbA1c was associated with lower SES (p,0.001), Pacific Island ethnicity (p,0.001), not living with both biological parents (p,0.05), and greater BMI SDS (p,0.05). A regression equation to predict HbA1c at 24 months was consequently developed. Conclusions: Deterioration in glycaemic control shortly after diagnosis in diabetic children is particularly marked in Pacific Island children and in those not living with both biological parents. Clinicians need to be aware of factors associated wit

    Frequency of Chlamydia trachomatis in Ureaplasma-positive healthy women attending their first prenatal visit in a community hospital in Sapporo, Japan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although <it>Chlamydia trachomatis </it>is the most commonly reported pathogen that causes urogenital infection such as urethritis or cervicitis, <it>Ureaplasma parvum </it>and <it>Ureaplasma urealyticum</it>, which are commensals in the genital tract, have also now been recognized as contributors to urogenital infection. However, whether the presence of either <it>U. parvum </it>or <it>U. urealyticum </it>is related to that of <it>C. trachomatis </it>in the urogenital tract remains unknown. We therefore attempted to estimate by PCR the prevalence of <it>C. trachomatis, U. parvum </it>and <it>U. urealyticum </it>in endocervical samples obtained from healthy women attending their first prenatal visit in Sapporo, Japan.</p> <p>Methods</p> <p>The samples were taken from 303 apparently healthy women, and the extracted DNAs (<it>n </it>= 280) were used for PCR detection targeting <it>C. trachomatis, U. parvum </it>and <it>U. urealyticum</it>. Statistical analysis of the data was performed by Fisher's exact test.</p> <p>Results</p> <p>PCR detection revealed that the prevalence of <it>C. trachomatis, U. parvum </it>and <it>U. urealyticum </it>was 14.3% (40/280), 41.7% (117/280) and 8.9% (25/280), respectively. <it>C. trachomatis ompA </it>genotype D was most frequently identified. Surprisingly, either <it>C. trachomatis </it>or <it>Ureaplasma </it>spp. was detected in almost half of the healthy women. Mixed infection of <it>C. trachomatis </it>with either <it>U. parvum </it>or <it>U. urealyticum </it>was also observed in 9.2% (26/280) of the women. There was a significant association between <it>C. trachomatis </it>and either <it>U. parvum </it>(<it>p </it>= 0.023) or <it>Ureaplasma </it>total (<it>p </it>= 0.013), but not <it>U. urealyticum </it>(<it>p </it>= 0.275).</p> <p>Conclusion</p> <p>This study demonstrated that the presence of <it>Ureaplasma </it>had a significant effect on the presence of <it>C. trachomatis </it>in the genital tract of healthy women, suggesting that mixed infection is an important factor in bacterial pathogenesis in the genital tract.</p

    A Gap Analysis Methodology for Collecting Crop Genepools: A Case Study with Phaseolus Beans

    Get PDF
    Background The wild relatives of crops represent a major source of valuable traits for crop improvement. These resources are threatened by habitat destruction, land use changes, and other factors, requiring their urgent collection and long-term availability for research and breeding from ex situ collections. We propose a method to identify gaps in ex situ collections (i.e. gap analysis) of crop wild relatives as a means to guide efficient and effective collecting activities. Methodology/Principal Findings The methodology prioritizes among taxa based on a combination of sampling, geographic, and environmental gaps. We apply the gap analysis methodology to wild taxa of the Phaseolus genepool. Of 85 taxa, 48 (56.5%) are assigned high priority for collecting due to lack of, or under-representation, in genebanks, 17 taxa are given medium priority for collecting, 15 low priority, and 5 species are assessed as adequately represented in ex situ collections. Gap “hotspots”, representing priority target areas for collecting, are concentrated in central Mexico, although the narrow endemic nature of a suite of priority species adds a number of specific additional regions to spatial collecting priorities. Conclusions/Significance Results of the gap analysis method mostly align very well with expert opinion of gaps in ex situ collections, with only a few exceptions. A more detailed prioritization of taxa and geographic areas for collection can be achieved by including in the analysis predictive threat factors, such as climate change or habitat destruction, or by adding additional prioritization filters, such as the degree of relatedness to cultivated species (i.e. ease of use in crop breeding). Furthermore, results for multiple crop genepools may be overlaid, which would allow a global analysis of gaps in ex situ collections of the world's plant genetic resource

    Advances and Prospect of Nanotechnology in Stem Cells

    Get PDF
    In recent years, stem cell nanotechnology has emerged as a new exciting field. Theoretical and experimental studies of interaction between nanomaterials or nanostructures and stem cells have made great advances. The importance of nanomaterials, nanostructures, and nanotechnology to the fundamental developments in stem cells-based therapies for injuries and degenerative diseases has been recognized. In particular, the effects of structure and properties of nanomaterials on the proliferation and differentiation of stem cells have become a new interdisciplinary frontier in regeneration medicine and material science. Here we review some of the main advances in this field over the past few years, explore the application prospects, and discuss the issues, approaches and challenges, with the aim of improving application of nanotechnology in the stem cells research and development
    corecore