6,832 research outputs found
Coherence in scale-free networks of chaotic maps
We study fully synchronized states in scale-free networks of chaotic logistic
maps as a function of both dynamical and topological parameters. Three
different network topologies are considered: (i) random scale-free topology,
(ii) deterministic pseudo-fractal scale-free network, and (iii) Apollonian
network. For the random scale-free topology we find a coupling strength
threshold beyond which full synchronization is attained. This threshold scales
as , where is the outgoing connectivity and depends on the
local nonlinearity. For deterministic scale-free networks coherence is observed
only when the coupling strength is proportional to the neighbor connectivity.
We show that the transition to coherence is of first-order and study the role
of the most connected nodes in the collective dynamics of oscillators in
scale-free networks.Comment: 9 pages, 8 figure
Size segregation and convection
The size segregation of granular materials in a vibrating container is
investigated using Molecular Dynamics. We find that the rising of larger
particles is accompanied by the existence of convection cells even in the case
of the lowest possible frequencies. The convection can, however, also be
triggered by the larger particle itself. The possibility of rising through this
mechanism strongly depends on the depth of the larger particle.Comment: 7 pages, 4 figure
Periodic Neural Activity Induced by Network Complexity
We study a model for neural activity on the small-world topology of Watts and
Strogatz and on the scale-free topology of Barab\'asi and Albert. We find that
the topology of the network connections may spontaneously induce periodic
neural activity, contrasting with chaotic neural activities exhibited by
regular topologies. Periodic activity exists only for relatively small networks
and occurs with higher probability when the rewiring probability is larger. The
average length of the periods increases with the square root of the network
size.Comment: 4 pages, 5 figure
Coefficient of restitution for elastic disks
We calculate the coefficient of restitution, , starting from a
microscopic model of elastic disks. The theory is shown to agree with the
approach of Hertz in the quasistatic limit, but predicts inelastic collisions
for finite relative velocities of two approaching disks. The velocity
dependence of is calculated numerically for a wide range of
velocities. The coefficient of restitution furthermore depends on the elastic
constants of the material via Poisson's number. The elastic vibrations absorb
kinetic energy more effectively for materials with low values of the shear
modulus.Comment: 25 pages, 12 Postscript figures, LaTex2
Onset of fluidization in vertically shaken granular material
When granular material is shaken vertically one observes convection, surface
fluidization, spontaneous heap formation and other effects. There is a
controversial discussion in literature whether there exists a threshold for the
Froude number below which these effects cannot be
observed anymore. By means of theoretical analysis and computer simulation we
find that there is no such single threshold. Instead we propose a modified
criterion which coincides with critical Froude number for small
driving frequency .Comment: 7 pages, 5 figure
Possible Stratification Mechanism in Granular Mixtures
We propose a mechanism to explain what occurs when a mixture of grains of
different sizes and different shapes (i.e. different repose angles) is poured
into a quasi-two-dimensional cell. Specifically, we develop a model that
displays spontaneous stratification of the large and small grains in
alternating layers. We find that the key requirement for stratification is a
difference in the repose angles of the two pure species, a prediction confirmed
by experimental findings. We also identify a kink mechanism that appears to
describe essential aspects of the dynamics of stratification.Comment: 4 pages, 4 figures, http://polymer.bu.edu/~hmakse/Home.htm
Density waves in dry granular media falling through a vertical pipe
We report experimental measurements of density waves in granular materials
flowing down in a capillary tube. The density wave regime occurs at
intermediate flow rates between a low density free fall regime and a high
compactness slower flow.Comment: LaTeX file, 17 pages, 6 EPS figures, Phys.Rev.E (Feb.1996
Characterisation of Medipix3 Silicon Detectors in a Charged-Particle Beam
While designed primarily for X-ray imaging applications, the Medipix3 ASIC
can also be used for charged-particle tracking. In this work, results from a
beam test at the CERN SPS with irradiated and non-irradiated sensors are
presented and shown to be in agreement with simulation, demonstrating the
suitability of the Medipix3 ASIC as a tool for characterising pixel sensors.Comment: 16 pages, 13 figure
Anomalous density dependence of static friction in sand
We measured experimentally the static friction force on the surface of
a glass rod immersed in dry sand. We observed that is extremely sensitive
to the closeness of packing of grains. A linear increase of the grain-density
yields to an exponentially increasing friction force. We also report on a novel
periodicity of during gradual pulling out of the rod. Our observations
demonstrate the central role of grain bridges and arches in the macroscopic
properties of granular packings.Comment: plain tex, 6 pages, to appear in Phys.Rev.
Fast shower simulation in the ATLAS calorimeter
The time to simulate pp collisions in the ATLAS detector is largely dominated by the showering of electromagnetic particles in the heavy parts of the detector, especially the electromagnetic barrel and endcap calorimeters. Two procedures have been developed to accelerate the processing time of electromagnetic particles in these regions: (1) a fast shower parameterisation and (2) a frozen shower library. Both work by generating the response of the calorimeter to electrons and positrons with Geant 4, and then reintroduce the response into the simulation at runtime.
In the fast shower parameterisation technique, a parameterisation is tuned to single electrons and used later by simulation. In the frozen shower technique, actual showers from low-energy particles are used in the simulation. Full Geant 4 simulation is used to develop showers down to ~1 GeV, at which point the shower is terminated by substituting a frozen shower. Judicious use of both techniques over the entire electromagnetic portion of the ATLAS calorimeter produces an important improvement of CPU time. We discuss the algorithms and their performance in this paper
- âŠ