6,939 research outputs found
Self-similarities in the frequency-amplitude space of a loss-modulated CO laser
We show the standard two-level continuous-time model of loss-modulated CO
lasers to display the same regular network of self-similar stability islands
known so far to be typically present only in discrete-time models based on
mappings. For class B laser models our results suggest that, more than just
convenient surrogates, discrete mappings in fact could be isomorphic to
continuous flows.Comment: (5 low-res color figs; for ALL figures high-res PDF:
http://www.if.ufrgs.br/~jgallas/jg_papers.html
Vacuum phenomenology of the chiral partner of the nucleon in a linear sigma model with vector mesons
We investigate a linear sigma model with global chiral symmetry. The mesonic degrees of freedom are the standard scalar and
pseudoscalar mesons and the vector and axial-vector mesons. The baryonic
degrees of freedom are the nucleon, , and its chiral partner, , which
is usually identified with N(1535). The chiral partner is incorporated in the
so-called mirror assignment, where the nucleon mass is not solely generated by
the chiral condensate but also by a chirally invariant mass term, . The
presence of (axial-) vector fields modifies the expressions for the axial
coupling constants of the nucleon, , and its partner,
. Using experimental data for the decays and
, as well as lattice results for we infer
MeV, i.e., an appreciable amount of the nucleon mass originates
from sources other than the chiral condensate. We test our model by evaluating
the decay and the s-wave nucleon-pion scattering lengths
.Comment: 16 pages, 2 figures. To appear in Phys. Rev.
Coefficient of restitution for elastic disks
We calculate the coefficient of restitution, , starting from a
microscopic model of elastic disks. The theory is shown to agree with the
approach of Hertz in the quasistatic limit, but predicts inelastic collisions
for finite relative velocities of two approaching disks. The velocity
dependence of is calculated numerically for a wide range of
velocities. The coefficient of restitution furthermore depends on the elastic
constants of the material via Poisson's number. The elastic vibrations absorb
kinetic energy more effectively for materials with low values of the shear
modulus.Comment: 25 pages, 12 Postscript figures, LaTex2
Onset of fluidization in vertically shaken granular material
When granular material is shaken vertically one observes convection, surface
fluidization, spontaneous heap formation and other effects. There is a
controversial discussion in literature whether there exists a threshold for the
Froude number below which these effects cannot be
observed anymore. By means of theoretical analysis and computer simulation we
find that there is no such single threshold. Instead we propose a modified
criterion which coincides with critical Froude number for small
driving frequency .Comment: 7 pages, 5 figure
Possible Stratification Mechanism in Granular Mixtures
We propose a mechanism to explain what occurs when a mixture of grains of
different sizes and different shapes (i.e. different repose angles) is poured
into a quasi-two-dimensional cell. Specifically, we develop a model that
displays spontaneous stratification of the large and small grains in
alternating layers. We find that the key requirement for stratification is a
difference in the repose angles of the two pure species, a prediction confirmed
by experimental findings. We also identify a kink mechanism that appears to
describe essential aspects of the dynamics of stratification.Comment: 4 pages, 4 figures, http://polymer.bu.edu/~hmakse/Home.htm
Vacuum Properties of Mesons in a Linear Sigma Model with Vector Mesons and Global Chiral Invariance
We present a two-flavour linear sigma model with global chiral symmetry and
vector and axial-vector mesons. We calculate pion-pion scattering lengths and
the decay widths of scalar, vector, and axial-vector mesons. It is demonstrated
that vector and axial-vector meson degrees of freedom play an important role in
these low-energy processes and that a reasonable theoretical description
requires globally chirally invariant terms other than the vector meson mass
term. An important question for meson vacuum phenomenology is the quark content
of the physical scalar f0(600) and a0(980) mesons. We investigate this question
by assigning the quark-antiquark sigma and a0 states of our model with these
physical mesons. We show via a detailed comparison with experimental data that
this scenario can describe all vacuum properties studied here except for the
decay width of the sigma, which turns out to be too small. We also study the
alternative assignment f0(1370) and a0(1450) for the scalar mesons. In this
case the decay width agrees with the experimental value, but the pion-pion
scattering length is too small. This indicates the necessity to
extend our model by additional scalar degrees of freedom.Comment: 22 pages, 6 figure
The current progress of the ALICE Ring Imaging Cherenkov Detector
Recently, the last two modules (out of seven) of the ALICE High Momentum
Particle Identification detector (HMPID) were assembled and tested. The full
detector, after a pre-commissioning phase, has been installed in the
experimental area, inside the ALICE solenoid, at the end of September 2006. In
this paper we review the status of the ALICE/HMPID project and we present a
summary of the series production of the CsI photo-cathodes. We describe the key
features of the production procedure which ensures high quality photo-cathodes
as well as the results of the quality assessment performed by means of a
specially developed 2D scanner system able to produce a detailed map of the CsI
photo-current over the entire photo-cathode surface.
Finally we present our recent R&D efforts toward the development of a novel
generation of imaging Cherenkov detectors with the aim to identify, in heavy
ions collisions, hadrons up to 30 GeV/c.Comment: Presented at the Imaging-2006 Conference, Stockholm, Sweden, June
200
Periodic Neural Activity Induced by Network Complexity
We study a model for neural activity on the small-world topology of Watts and
Strogatz and on the scale-free topology of Barab\'asi and Albert. We find that
the topology of the network connections may spontaneously induce periodic
neural activity, contrasting with chaotic neural activities exhibited by
regular topologies. Periodic activity exists only for relatively small networks
and occurs with higher probability when the rewiring probability is larger. The
average length of the periods increases with the square root of the network
size.Comment: 4 pages, 5 figure
Size segregation and convection
The size segregation of granular materials in a vibrating container is
investigated using Molecular Dynamics. We find that the rising of larger
particles is accompanied by the existence of convection cells even in the case
of the lowest possible frequencies. The convection can, however, also be
triggered by the larger particle itself. The possibility of rising through this
mechanism strongly depends on the depth of the larger particle.Comment: 7 pages, 4 figure
- …