2,893 research outputs found

    3D polymer structures with variable permittivity at terahertz frequencies

    Get PDF
    Titanium dioxide (TiO2) powder has been blended with polydimethylsiloxane (PDMS) to manufacture a composite polymer with variable permittivity. Vector network analyser measurements taken between 0.75-1.1 THz quantify the relationship between TiO2 concentration and complex permittivity of the resultant material. Complex 3D structures have been produced with a casting process. Applications for the tunable-permittivity polymer include dielectric regions in photonic and plasmonic devices operating at terahertz frequencies as well as single pixel imaging systems

    Pattern recognition, attention, and information bottlenecks in the primate visual system

    Get PDF
    In its evolution, the primate visual system has developed impressive capabilities for recognizing complex patterns in natural images. This process involves many stages of analysis and a variety of information processing strategies. This paper concentrates on the importance of 'information bottlenecks,' which restrict the amount of information that can be handled at different stages of analysis. These steps are crucial for reducing the overwhelming computational complexity associated with recognizing countless objects from arbitrary viewing angles, distances, and perspectives. The process of directed visual attention is an especially important information bottleneck because of its flexibility in determining how information is routed to high-level pattern recognition centers

    Highly charged ions in Penning traps, a new tool for resolving low lying isomeric states

    Full text link
    The use of highly charged ions increases the precision and resolving power, in particular for short-lived species produced at on-line radio-isotope beam facilities, achievable with Penning trap mass spectrometers. This increase in resolving power provides a new and unique access to resolving low-lying long-lived (T1/2>50T_{1/2} > 50 ms) nuclear isomers. Recently, the 111.19(22)111.19(22) keV (determined from γ\gamma-ray spectroscopy) isomeric state in 78^{78}Rb has been resolved from the ground state, in a charge state of q=8+q=8+ with the TITAN Penning trap at the TRIUMF-ISAC facility. The excitation energy of the isomer was measured to be 108.7(6.4)108.7(6.4) keV above the ground state. The extracted masses for both the ground and isomeric states, and their difference, agree with the AME2003 and Nuclear Data Sheet values. This proof of principle measurement demonstrates the feasibility of using Penning trap mass spectrometers coupled to charge breeders to study nuclear isomers and opens a new route for isomer searches.Comment: 8 pages, 6 figure

    Particle acceleration at ultrarelativistic shocks: an eigenfunction method

    Get PDF
    We extend the eigenfunction method of computing the power-law spectrum of particles accelerated at a relativistic shock fronts to apply to shocks of arbitrarily high Lorentz factor. In agreement with the findings of Monte-Carlo simulations, we find the index of the power-law distribution of accelerated particles which undergo isotropic diffusion in angle at an ultrarelativistic, unmagnetized shock is s=4.23 (where s=-d(ln f)/dp with f the Lorentz invariant phase-space density and p the momentum). This corresponds to a synchrotron index for uncooled electrons of a=0.62 (taking cooling into account a=1.12), where a=-d(ln F)/dn, F is the radiation flux and n the frequency. We also present an approximate analytic expression for the angular distribution of accelerated particles, which displays the effect of particle trapping by the shock: compared with the non-relativistic case the angular distribution is weighted more towards the plane of the shock and away from its normal. We investigate the sensitivity of our results to the transport properties of the particles and the presence of a magnetic field. Shocks in which the ratio of Poynting to kinetic energy flux upstream is not small are less compressive and lead to larger values of ss.Comment: Minor additions on publicatio

    Extinction of the N=20 neutron-shell closure for 32Mg examined by direct mass measurements

    Full text link
    The 'island of inversion' around 32^{32}Mg is one of the most important paradigm for studying the disappearance of the stabilizing 'magic' of a shell closure. We present the first Penning-trap mass measurements of the exotic nuclides 29−31^{29-31}Na and 30−34^{30-34}Mg, which allow a precise determination of the empirical shell gap for 32^{32}Mg. The new value of 1.10(3) MeV is the lowest observed shell gap for any nuclide with a canonical magic number.Comment: 6 pages, 4 figures, submitted to Physical Review

    Statistical Properties of Share Volume Traded in Financial Markets

    Full text link
    We quantitatively investigate the ideas behind the often-expressed adage `it takes volume to move stock prices', and study the statistical properties of the number of shares traded QΔtQ_{\Delta t} for a given stock in a fixed time interval Δt\Delta t. We analyze transaction data for the largest 1000 stocks for the two-year period 1994-95, using a database that records every transaction for all securities in three major US stock markets. We find that the distribution P(QΔt)P(Q_{\Delta t}) displays a power-law decay, and that the time correlations in QΔtQ_{\Delta t} display long-range persistence. Further, we investigate the relation between QΔtQ_{\Delta t} and the number of transactions NΔtN_{\Delta t} in a time interval Δt\Delta t, and find that the long-range correlations in QΔtQ_{\Delta t} are largely due to those of NΔtN_{\Delta t}. Our results are consistent with the interpretation that the large equal-time correlation previously found between QΔtQ_{\Delta t} and the absolute value of price change ∣GΔt∣| G_{\Delta t} | (related to volatility) are largely due to NΔtN_{\Delta t}.Comment: 4 pages, two-column format, four figure
    • …
    corecore