11,852 research outputs found

    Low-pressure, chemical vapor deposition polysilicon

    Get PDF
    The low-pressure chemical vapor deposition (LPCVD) of polycrystalline silicon was investigted. The physical system was described, as was the controlling process parameters and requirements for producing films for use as an integral portion of the solar cell contact system

    Seeking large-scale magnetic fields in a pure-disk dwarf galaxy NGC 2976

    Get PDF
    It is still unknown how magnetic field-generation mechanisms could operate in low-mass dwarf galaxies. Here, we present a detailed study of a nearby pure-disk dwarf galaxy NGC 2976. Unlike previously observed dwarf objects, this galaxy possesses a clearly defined disk. For the purpose of our studies, we performed deep multi-frequency polarimetric observations of NGC 2976 with the VLA and Effelsberg radio telescopes. Additionally, we supplement them with re-imaged data from the WSRT-SINGS survey. The magnetic field morphology discovered in NGC 2976 consists of a southern polarized ridge. This structure does not seem to be due to just a pure large-scale dynamo process (possibly cosmic-ray driven) at work in this object, as indicated by the RM data and dynamo number calculations. Instead, the field of NGC 2976 is modified by past gravitational interactions and possibly also by ram pressure inside the M 81 galaxy group environment. The estimates of total (7 muG) and ordered (3 muG) magnetic field strengths, as well as degree of field order (0.46), which is similar to those observed in spirals, suggest that tidally generated magnetized gas flows can further enhance dynamo action in the object. NGC 2976 is apparently a good candidate for the efficient magnetization of its neighbourhood. It is able to provide an ordered (perhaps also regular) magnetic field into the intergalactic space up to a distance of about 5 kpc. Tidal interactions (and possibly also ram pressure) can lead to the formation of unusual magnetic field morphologies (like polarized ridges) in galaxies out of the star-forming disks, which do not follow any observed component of the interstellar medium (ISM), as observed in NGC 2976. These galaxies are able to provide ordered magnetic fields far out of their main disks.Comment: 16 page

    AGN activity and the misaligned hot ISM in the compact radio elliptical NGC4278

    Get PDF
    The analysis of a deep (579 ks) Chandra ACIS pointing of the elliptical galaxy NGC4278, which hosts a low luminosity AGN and compact radio emission, allowed us to detect extended emission from hot gas out to a radius of \sim 5 kpc, with a 0.5--8 keV luminosity of 2.4x10^{39} erg/s. The emission is elongated in the NE-SW direction, misaligned with respect to the stellar body, and aligned with the ionized gas, and with the Spitzer IRAC 8\mum non-stellar emission. The nuclear X-ray luminosity decreased by a factor of \sim 18 since the first Chandra observation in 2005, a dimming that enabled the detection of hot gas even at the position of the nucleus. Both in the projected and deprojected profiles, the gas shows a significantly larger temperature (kT=0.75 keV) in the inner \sim 300 pc than in the surrounding region, where it stays at \sim 0.3 keV, a value lower than expected from standard gas heating assumptions. The nuclear X-ray emission is consistent with that of a low radiative efficiency accretion flow, accreting mass at a rate close to the Bondi one; estimates of the power of the nuclear jets require that the accretion rate is not largely reduced with respect to the Bondi rate. Among possibile origins for the central large hot gas temperature, such as gravitational heating from the central massive black hole and a recent AGN outburst, the interaction with the nuclear jets seems more likely, especially if the latter remain confined, and heat the nuclear region frequently. The unusual hot gas distribution on the galactic scale could be due to the accreting cold gas triggering the cooling of the hot phase, a process also contributing to the observed line emission from ionize gas, and to the hot gas temperature being lower than expected; alternatively, the latter could be due to an efficiency of the type Ia supernova energy mixing lower than usually adopted.Comment: 48 pages, submitted to Ap

    Clustering of solutions in the random satisfiability problem

    Full text link
    Using elementary rigorous methods we prove the existence of a clustered phase in the random KK-SAT problem, for K≥8K\geq 8. In this phase the solutions are grouped into clusters which are far away from each other. The results are in agreement with previous predictions of the cavity method and give a rigorous confirmation to one of its main building blocks. It can be generalized to other systems of both physical and computational interest.Comment: 4 pages, 1 figur

    The effect of Mg location on Co-Mg-Ru/γ-Al2O3 Fischer–Tropsch catalysts

    Get PDF
    © 2016 The Author(s) Published by the Royal Society. All rights reserved.The effectiveness of Mg as a promoter of Co-Ru/γ-Al2O3 Fischer-Tropsch catalysts depends on how and when the Mg is added. When the Mg is impregnated into the support before the Co and Ru addition, some Mg is incorporated into the support in the form of MgxAl2O3+x if the material is calcined at 550°C or 800°C after the impregnation, while the remainder is present as amorphous MgO/MgCO3 phases. After subsequent Co-Ru impregnation MgxCo3-xO4 is formed which decomposes on reduction, leading to Co(0) particles intimately mixed with Mg, as shown by high-resolution transmission electron microscopy. The process of impregnating Co into an Mg-modified support results in dissolution of the amorphous Mg, and it is this Mg which is then incorporated into MgxCo3-xO4. Acid washing or higher temperature calcination after Mg impregnation can remove most of this amorphous Mg, resulting in lower values of x in MgxCo3-xO4. Catalytic testing of these materials reveals that Mg incorporation into the Co oxide phase is severely detrimental to the site-Time yield, while Mg incorporation into the support may provide some enhancement of activity at high temperature

    Millimeter wave satellite concepts, volume 1

    Get PDF
    The identification of technologies necessary for development of millimeter spectrum communication satellites was examined from a system point of view. Development of methodology based on the technical requirements of potential services that might be assigned to millimeter wave bands for identifying the viable and appropriate technologies for future NASA millimeter research and development programs, and testing of this methodology with selected user applications and services were the goals of the program. The entire communications network, both ground and space subsystems was studied. Cost, weight, and performance models for the subsystems, conceptual design for point-to-point and broadcast communications satellites, and analytic relationships between subsystem parameters and an overall link performance are discussed along with baseline conceptual systems, sensitivity studies, model adjustment analyses, identification of critical technologies and their risks, and brief research and development program scenarios for the technologies judged to be moderate or extensive risks. Identification of technologies for millimeter satellite communication systems, and assessment of the relative risks of these technologies, was accomplished through subsystem modeling and link optimization for both point-to-point and broadcast applications

    Chandra Detects a Rapid Flare in the Gravitationally Lensed Mini-BALQSO RX J0911.4+0551

    Full text link
    The mini Broad Absorption Line (BAL) quasar RX J0911.4+0551 was observed with the Advanced CCD Imaging Spectrometer (ACIS) of the Chandra X-ray Observatory for ~ 29 ks as part of a gravitational lens (GL) survey aimed at measuring time-delays. Timing analysis of the light-curve of the lensed image A2 shows a rapid flux variation with a duration of about 2000s. A Kolmogorov-Smirnov test shows that the probability that a constant-intensity source would produce the observed variability is less than ~ 0.2 percent. We discuss possible origins for the observed short-term X-ray variability. Our gravitational lens models for the RX J0911.4+0551 GL system predict a time-delay of less than a day between images A1 and A2. The rapid variability combined with the predicted short-time delay make RX J0911.4+0551 an ideal system to apply the GL method for estimating the Hubble constant. We describe the prospects of measuring H_0 within single X-ray observations of GL systems with relatively short time delays. Modeling of the spectrum of the mini-BAL quasar RX J0911.4+0551 suggests the presence of an intrinsic absorber. Partial covering models are slightly preferred over models that contain absorption due to intrinsic ionized or neutral gas.Comment: 17 pages, includes 5 figures, Accepted for publication in Ap
    • …
    corecore