5,346 research outputs found

    Redox Chemistry and Molybdenum Burial in a Mesoproterozoic Lake

    Full text link
    While marine sediments have been used to constrain a history of redox chemistry throughout the Precambrian, far fewer data have been generated from lakes. With major biological innovations thought to have occurred in Proterozoic lakes, understanding their chemistry is critical for understanding the evolution of eukaryotic life. We use sediment geochemistry to characterize the redox conditions of the Nonesuch Formation (~1.1 Ga) and a modern analogue for the Proterozoic: the Middle Island Sinkhole in Lake Huron (USA). Iron speciation, Mo contents, and Mo‐U covariation demonstrate oxic and anoxic—not euxinic—environments, with no clear indicators of enhanced biological productivity in the Nonesuch Formation. Moderate Mo enrichments observed in the Nonesuch Formation are not attributed to euxinia, but instead to an authigenic particulate shuttle. We suggest that the Fe and Mo sediment geochemistry of these lacustrine systems reflect only local water column and sediment burial conditions and not atmospheric oxygenation.Plain Language SummaryLakes are proposed to have been critical environments for the evolution of life during the Proterozoic (~2.5 to 0.5 billion years ago). However, relatively little is known about the chemistry of ancient lakes, including the availability of oxygen for biological productivity, and how local oxygen availability can be extrapolated to understand global oxygen availability. In addition, with no lakes remaining from the Proterozoic, the only way to study ancient lakes is to use the chemistry of the sediments left behind. This study uses the sediment chemistry of elements that are sensitive to oxygen to understand oxygen availability in a Proterozoic lake environment. These data were then compared to modern lake environments with known chemistry and oxygen levels in order to interpret the results better. We found that oxygen availability in the Proterozoic lake was variable, with no clear indicators of abundant biological productivity. We conclude that ancient lake sediments only constrain the chemistry of the local environment, with no major implications for global or even regional atmospheric oxygenation.Key PointsFe, Mo, and U sediment geochemistry of the Nonesuch Formation (~1.1 Ga; USA) indicate fluctuating oxic and anoxic redox chemistryMo and U covariation in the Nonesuch Formation and modern analogue sediments confirm euxinia is not necessary for moderate Mo burialComparison of Nonesuch Formation and modern analogue indicates that Proterozoic lakes are unlikely to constrain atmospheric oxygenPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/150528/1/grl59087_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/150528/2/grl59087.pd

    A Collection of Features for Semantic Graphs

    Get PDF
    Semantic graphs are commonly used to represent data from one or more data sources. Such graphs extend traditional graphs by imposing types on both nodes and links. This type information defines permissible links among specified nodes and can be represented as a graph commonly referred to as an ontology or schema graph. Figure 1 depicts an ontology graph for data from National Association of Securities Dealers. Each node type and link type may also have a list of attributes. To capture the increased complexity of semantic graphs, concepts derived for standard graphs have to be extended. This document explains briefly features commonly used to characterize graphs, and their extensions to semantic graphs. This document is divided into two sections. Section 2 contains the feature descriptions for static graphs. Section 3 extends the features for semantic graphs that vary over time

    Ionization of Rydberg atoms by blackbody radiation

    Full text link
    We have studied an ionization of alkali-metal Rydberg atoms by blackbody radiation (BBR). The results of the theoretical calculations of ionization rates of Li, Na, K, Rb and Cs Rydberg atoms are presented. Calculations have been performed for nS, nP and nD states which are commonly used in a variety of experiments, at principal quantum numbers n=8-65 and at the three ambient temperatures of 77, 300 and 600 K. A peculiarity of our calculations is that we take into account the contributions of BBR-induced redistribution of population between Rydberg states prior to photoionization and field ionization by extraction electric field pulses. The obtained results show that these phenomena affect both the magnitude of measured ionization rates and shapes of their dependences on n. A Cooper minimum for BBR-induced transitions between bound Rydberg states of Li has been found. The calculated ionization rates are compared with our earlier measurements of BBR-induced ionization rates of Na nS and nD Rydberg states with n=8-20 at 300 K. A good agreement for all states except nS with n>15 is observed. Useful analytical formulas for quick estimation of BBR ionization rates of Rydberg atoms are presented. Application of BBR-induced ionization signal to measurements of collisional ionization rates is demonstrated.Comment: 36 pages, 16 figures. Paper is revised following NJP referees' comments and suggestion

    Universal time-evolution of a Rydberg lattice gas with perfect blockade

    Full text link
    We investigate the dynamics of a strongly interacting spin system that is motivated by current experimental realizations of strongly interacting Rydberg gases in lattices. In particular we are interested in the temporal evolution of quantities such as the density of Rydberg atoms and density-density correlations when the system is initialized in a fully polarized state without Rydberg excitations. We show that in the thermodynamic limit the expectation values of these observables converge at least logarithmically to universal functions and outline a method to obtain these functions. We prove that a finite one-dimensional system follows this universal behavior up to a given time. The length of this universal time period depends on the actual system size. This shows that already the study of small systems allows to make precise predictions about the thermodynamic limit provided that the observation time is sufficiently short. We discuss this for various observables and for systems with different dimensions, interaction ranges and boundary conditions.Comment: 16 pages, 3 figure

    Absolute frequency measurements of 85Rb nF7/2 Rydberg states using purely optical detection

    Full text link
    A three-step laser excitation scheme is used to make absolute frequency measurements of highly excited nF7/2 Rydberg states in 85Rb for principal quantum numbers n=33-100. This work demonstrates the first absolute frequency measurements of rubidium Rydberg levels using a purely optical detection scheme. The Rydberg states are excited in a heated Rb vapour cell and Doppler free signals are detected via purely optical means. All of the frequency measurements are made using a wavemeter which is calibrated against a GPS disciplined self-referenced optical frequency comb. We find that the measured levels have a very high frequency stability, and are especially robust to electric fields. The apparatus has allowed measurements of the states to an accuracy of 8.0MHz. The new measurements are analysed by extracting the modified Rydberg-Ritz series parameters.Comment: 12 pages, 5 figures, submitted to New. J. Phy

    Stellar Populations in Compact Galaxy Groups: a Multi-Wavelength Study of HCGs 16, 22, and 42, their Star Clusters and Dwarf Galaxies

    Get PDF
    We present a multi-wavelength analysis of three compact galaxy groups, HCGs 16, 22, and 42, which describe a sequence in terms of gas richness, from space- (Swift, HST, Spitzer) and ground-based (LCO, CTIO) imaging and spectroscopy. We study various signs of past interactions including a faint, dusty tidal feature about HCG 16A, which we tentatively age-date at <1 Gyr. This represents the possible detection of a tidal feature at the end of its phase of optical observability. Our HST images also resolve what were thought to be double nuclei in HCG 16C and D into multiple, distinct sources, likely to be star clusters. Beyond our phenomenological treatment, we focus primarily on contrasting the stellar populations across these three groups. The star clusters show a remarkable intermediate-age population in HCG 22, and identify the time at which star formation was quenched in HCG 42. We also search for dwarf galaxies at accordant redshifts. The inclusion of 33 members and 27 'associates' (possible members) radically changes group dynamical masses, which in turn may affect previous evolutionary classifications. The extended membership paints a picture of relative isolation in HCGs 16 and 22, but shows HCG 42 to be part of a larger structure, following a dichotomy expected from recent studies. We conclude that (a) star cluster populations provide an excellent metric of evolutionary state, as they can age-date the past epochs of star formation; and (b) the extended dwarf galaxy population must be considered in assessing the dynamical state of a compact group.Comment: 29 pages, 13 figures. Accepted for publication in The Astrophysical Journa

    Manipulating ionization path in a Stark map: Stringent schemes for the selective field ionization in highly excited Rb Rydberg atoms

    Get PDF
    We have developed a quite stringent method in selectivity to ionize the low angular- momentum (ℓ\ell) states which lie below and above the adjacent manifold in highly excited Rb Rydberg atoms. The method fully exploits the pulsed field-ionization characteristics of the manifold states in high slew-rate regime: Specifically the low ℓ\ell state below (above) the adjacent manifold is firstly transferred to the lowest (highest) state in the manifold via the adiabatic transition at the first avoided crossing in low slew-rate regime, and then the atoms are driven to a high electric field for ionization in high slew-rate regime. These extreme states of the manifold are ionized at quite different fields due to the tunneling process, resulting in thus the stringent selectivity. Two manipulation schemes to realize this method actually are demonstrated here experimentally.Comment: 10 pages, 4 figure

    Systematic observation of tunneling field-ionization in highly excited Rb Rydberg atoms

    Full text link
    Pulsed field ionization of high-nn (90 ≀n≀\leq n \leq 150) manifold states in Rb Rydberg atoms has been investigated in high slew-rate regime. Two peaks in the field ionization spectra were systematically observed for the investigated nn region, where the field values at the lower peak do not almost depend on the excitation energy in the manifold, while those at the higher peak increase with increasing excitation energy. The fraction of the higher peak component to the total ionization signals increases with increasing nn, exceeding 80% at nn = 147. Characteristic behavior of the peak component and the comparison with theoretical predictions indicate that the higher peak component is due to the tunneling process. The obtained results show for the first time that the tunneling process plays increasingly the dominant role at such highly excited nonhydrogenic Rydberg atoms.Comment: 8 pages, 5 figure
    • 

    corecore