383 research outputs found

    Finite-Connectivity Spin-Glass Phase Diagrams and Low Density Parity Check Codes

    Get PDF
    We obtain phase diagrams of regular and irregular finite connectivity spin-glasses. Contact is firstly established between properties of the phase diagram and the performances of low density parity check codes (LDPC) within the Replica Symmetric (RS) ansatz. We then study the location of the dynamical and critical transition of these systems within the one step Replica Symmetry Breaking theory (RSB), extending similar calculations that have been performed in the past for the Bethe spin-glass problem. We observe that, away from the Nishimori line, in the low temperature region, the location of the dynamical transition line does change within the RSB theory, in comparison with the (RS) case. For LDPC decoding over the binary erasure channel we find, at zero temperature and rate R=1/4 an RS critical transition point located at p_c = 0.67 while the critical RSB transition point is located at p_c = 0.7450, to be compared with the corresponding Shannon bound 1-R. For the binary symmetric channel (BSC) we show that the low temperature reentrant behavior of the dynamical transition line, observed within the RS ansatz, changes within the RSB theory; the location of the dynamical transition point occurring at higher values of the channel noise. Possible practical implications to improve the performances of the state-of-the-art error correcting codes are discussed.Comment: 21 pages, 15 figure

    Finite size effects and error-free communication in Gaussian channels

    Get PDF
    The efficacy of a specially constructed Gallager-type error-correcting code to communication in a Gaussian channel is being examined. The construction is based on the introduction of complex matrices, used in both encoding and decoding, which comprise sub-matrices of cascading connection values. The finite size effects are estimated for comparing the results to the bounds set by Shannon. The critical noise level achieved for certain code-rates and infinitely large systems nearly saturates the bounds set by Shannon even when the connectivity used is low

    Cryptographical Properties of Ising Spin Systems

    Full text link
    The relation between Ising spin systems and public-key cryptography is investigated using methods of statistical physics. The insight gained from the analysis is used for devising a matrix-based cryptosystem whereby the ciphertext comprises products of the original message bits; these are selected by employing two predetermined randomly-constructed sparse matrices. The ciphertext is decrypted using methods of belief-propagation. The analyzed properties of the suggested cryptosystem show robustness against various attacks and competitive performance to modern cyptographical methods.Comment: 4 pages, 2 figure

    Assessing and countering reaction attacks against post-quantum public-key cryptosystems based on QC-LDPC codes

    Full text link
    Code-based public-key cryptosystems based on QC-LDPC and QC-MDPC codes are promising post-quantum candidates to replace quantum vulnerable classical alternatives. However, a new type of attacks based on Bob's reactions have recently been introduced and appear to significantly reduce the length of the life of any keypair used in these systems. In this paper we estimate the complexity of all known reaction attacks against QC-LDPC and QC-MDPC code-based variants of the McEliece cryptosystem. We also show how the structure of the secret key and, in particular, the secret code rate affect the complexity of these attacks. It follows from our results that QC-LDPC code-based systems can indeed withstand reaction attacks, on condition that some specific decoding algorithms are used and the secret code has a sufficiently high rate.Comment: 21 pages, 2 figures, to be presented at CANS 201

    Statistical mechanics of lossy compression for non-monotonic multilayer perceptrons

    Full text link
    A lossy data compression scheme for uniformly biased Boolean messages is investigated via statistical mechanics techniques. We utilize tree-like committee machine (committee tree) and tree-like parity machine (parity tree) whose transfer functions are non-monotonic. The scheme performance at the infinite code length limit is analyzed using the replica method. Both committee and parity treelike networks are shown to saturate the Shannon bound. The AT stability of the Replica Symmetric solution is analyzed, and the tuning of the non-monotonic transfer function is also discussed.Comment: 29 pages, 7 figure

    Statistical mechanics of error exponents for error-correcting codes

    Full text link
    Error exponents characterize the exponential decay, when increasing message length, of the probability of error of many error-correcting codes. To tackle the long standing problem of computing them exactly, we introduce a general, thermodynamic, formalism that we illustrate with maximum-likelihood decoding of low-density parity-check (LDPC) codes on the binary erasure channel (BEC) and the binary symmetric channel (BSC). In this formalism, we apply the cavity method for large deviations to derive expressions for both the average and typical error exponents, which differ by the procedure used to select the codes from specified ensembles. When decreasing the noise intensity, we find that two phase transitions take place, at two different levels: a glass to ferromagnetic transition in the space of codewords, and a paramagnetic to glass transition in the space of codes.Comment: 32 pages, 13 figure

    Opportunistic linked data querying through approximate membership metadata

    Get PDF
    Between URI dereferencing and the SPARQL protocol lies a largely unexplored axis of possible interfaces to Linked Data, each with its own combination of trade-offs. One of these interfaces is Triple Pattern Fragments, which allows clients to execute SPARQL queries against low-cost servers, at the cost of higher bandwidth. Increasing a client's efficiency means lowering the number of requests, which can among others be achieved through additional metadata in responses. We noted that typical SPARQL query evaluations against Triple Pattern Fragments require a significant portion of membership subqueries, which check the presence of a specific triple, rather than a variable pattern. This paper studies the impact of providing approximate membership functions, i.e., Bloom filters and Golomb-coded sets, as extra metadata. In addition to reducing HTTP requests, such functions allow to achieve full result recall earlier when temporarily allowing lower precision. Half of the tested queries from a WatDiv benchmark test set could be executed with up to a third fewer HTTP requests with only marginally higher server cost. Query times, however, did not improve, likely due to slower metadata generation and transfer. This indicates that approximate membership functions can partly improve the client-side query process with minimal impact on the server and its interface

    Secure and linear cryptosystems using error-correcting codes

    Full text link
    A public-key cryptosystem, digital signature and authentication procedures based on a Gallager-type parity-check error-correcting code are presented. The complexity of the encryption and the decryption processes scale linearly with the size of the plaintext Alice sends to Bob. The public-key is pre-corrupted by Bob, whereas a private-noise added by Alice to a given fraction of the ciphertext of each encrypted plaintext serves to increase the secure channel and is the cornerstone for digital signatures and authentication. Various scenarios are discussed including the possible actions of the opponent Oscar as an eavesdropper or as a disruptor

    Analysis of reaction and timing attacks against cryptosystems based on sparse parity-check codes

    Full text link
    In this paper we study reaction and timing attacks against cryptosystems based on sparse parity-check codes, which encompass low-density parity-check (LDPC) codes and moderate-density parity-check (MDPC) codes. We show that the feasibility of these attacks is not strictly associated to the quasi-cyclic (QC) structure of the code but is related to the intrinsically probabilistic decoding of any sparse parity-check code. So, these attacks not only work against QC codes, but can be generalized to broader classes of codes. We provide a novel algorithm that, in the case of a QC code, allows recovering a larger amount of information than that retrievable through existing attacks and we use this algorithm to characterize new side-channel information leakages. We devise a theoretical model for the decoder that describes and justifies our results. Numerical simulations are provided that confirm the effectiveness of our approach

    Shannon Meets Carnot: Generalized Second Thermodynamic Law

    Full text link
    The classical thermodynamic laws fail to capture the behavior of systems with energy Hamiltonian which is an explicit function of the temperature. Such Hamiltonian arises, for example, in modeling information processing systems, like communication channels, as thermal systems. Here we generalize the second thermodynamic law to encompass systems with temperature-dependent energy levels, dQ=TdS+dTdQ=TdS+dT, where denotes averaging over the Boltzmann distribution and reveal a new definition to the basic notion of temperature. This generalization enables to express, for instance, the mutual information of the Gaussian channel as a consequence of the fundamental laws of nature - the laws of thermodynamics
    corecore